Chin. Phys. Lett.  2015, Vol. 32 Issue (4): 040501    DOI: 10.1088/0256-307X/32/4/040501
GENERAL |
Propagation and Interaction of Edge Dislocation (Kink) in the Square Lattice
JIA Li-Ping1, Jasmina Tekić2, DUAN Wen-Shan1**
1College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou 730070
2Vinca Institute of Nuclear Sciences, Laboratory for Theoretical and Condensed Matter Physics, University of Belgrade, Belgrade 11001, Serbia
Cite this article:   
JIA Li-Ping, Jasmina Teki?, DUAN Wen-Shan 2015 Chin. Phys. Lett. 32 040501
Download: PDF(1861KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The propagation of kink or edge dislocations in the underdamped generalized two-dimensional Frenkel–Kontorova model with harmonic interaction is studied with numerical simulations. The obtained results show that exactly one line of atoms can be inserted into the lattice, which remains at standstill. However, if more than one line of atoms are inserted into the lattice, then they will split into several lines with α=1, where α presents the atoms inserted. In other words, only the kink with α=1 is stable, while the other kinks are unstable, and will split into α=1 kinks, which remain at standstill.

Received: 14 October 2014      Published: 30 April 2015
PACS:  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  45.05.+x (General theory of classical mechanics of discrete systems)  
  05.50.+q (Lattice theory and statistics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/4/040501       OR      https://cpl.iphy.ac.cn/Y2015/V32/I4/040501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIA Li-Ping
Jasmina Teki?
DUAN Wen-Shan

[1] Kontorova T A and Frenkel Y I 1938 Zh. Eksp Teor Fiz 8 89
[2] Braun O M and Pcyrard M 1995 Phys. Rev. E 51 4999
[3] Frenkel Y I 1972 Introduction to the Theory of Metals (Leningrad: Nauka) (in Russian)
[4] Kovalev A S, Kondratyuk A D, Kosevich A M and Landau A I 1993 Phys. Status Solidi B 177 117
[5] Franzosi P, Salviati G, Scaffardi M, Genova F, PelLegrino S and Stano A 1988 J. Cryst. Growth 88 135
[6] Yang Y N, Trafas B M, Siefert R L and Weaver J H 1991 Phys. Rev. B 44 3218
[7] Watanabe S, van der Zant H S J, Strogatz S H and Orlando T P 1996 Physica D 97 429
[8] Oudenaarden A van and Mooij J E 1996 Phys. Rev. Lett. 76 4947
[9] Niu Q and Nori F 1989 Phys. Rev. B 39 2134
[10] Grner G 1988 Rev. Mod. Phys. 60 1129
[11] Gillan M J and Holloway R W 1985 Rev. Mod. Phys. 18 4903
[12] Reichhardt C and Olson Reichhardt C J 2004 Phys. Rev. Lett. 92 108301
[13] Matsuda T, Harada K, Kasai H, Kamimura O and Tonomura A 1996 Science 1393 271
[14] Persson B N J 1999 Surf. Sci. Rep. 33 83
[15] Wang C L, Duan W S, Chen J M and Hong X R 2008 Appl. Phys. Lett. 93 153116
[16] Yang Y, Duan W S, Chen J M, Yang L, Teki? J, Shao Z G and Wang C L 2010 Phys. Rev. E 82 051119
[17] Jia R J, Wang C L, Yang Y, Gou x q, Chen J M and Duan W S 2013 Acta Phys. Sin. 62 6
[18] Yang Y, Wang C L, Duan W S, Shi Y R and Chen J M 2012 Acta Phys. Sin. 61 13
[19] Li X L, Liu F, Lin M M, Chen J M and Duan W S 2010 Acta Phys. Sin. 59 4
[20] Lin M M, Duan W S and Chen J M 2010 Chin. Phys. B 19 026201
[21] Nie L R, Yu L L, Zheng Z G and Shu C Z 2013 Phys. Rev. E 87 062142
[22] Wang L, Hu B and Li Bw 2012 Phys. Rev. E 86 040101
[23] Wang L, Hu B and Li B W 2012 Phys. Rev. E 85 061112
[24] Hu B and Yang L 2005 Chaos 15 015119
[25] Braun O M, Hu B and Zeltser A 2000 Phys. Rev. E 62 4235
[26] Braun O M, Zhang H, Hu B and Teki? J 2003 Phys. Rev. E 67 066602
[27] Toda M 1967 J. Phys. Soc. Jpn. 22 431
[28] Toda M 1967 J. Phys. Soc. Jpn. 23 501
[29] Toda M 1975 Phys. Rep. 18 1
[30] Toda M 1981 Theory of Nonlinear Lattices (Berlin: Springer-Verlag)
[31] Ilzuka T and Wadati 1992 J. Phys. Soc. Jpn. 61 3077
[32] Ilzuka T and Wadati 1992 J. Phys. Soc. Jpn. 61 4344
[33] Ilzuka T and Wadati 1993 J. Phys. Soc. Jpn. 62 1932
[34] Duan W S, Lv K P and Zhao J B 1994 Chin. J. Comput. Phys. 11 129
[35] Duan W S and Zhao J B 1990 J. Northwest Normal University 2 31
[36] Duan W S and Wang Y S 1993 J. Northwest Normal University 3 29
[37] D J Evans and G Morriss 1990 Statistical Mechanics of Nonequilibrium Liquids (London: Academic)
[38] Nose S 1984 J. Chem. Phys. 85 511
[39] Hoover W G 1985 Phys. Rev. A 31 1695

Related articles from Frontiers Journals
[1] Xi-Ci Yang, Z. Y. Xie, and Xiao-Tao Yang. Exploring Explicit Coarse-Grained Structure in Artificial Neural Networks[J]. Chin. Phys. Lett., 2023, 40(2): 040501
[2] Lingxiao Wang, Yin Jiang, Lianyi He, and Kai Zhou. Continuous-Mixture Autoregressive Networks Learning the Kosterlitz–Thouless Transition[J]. Chin. Phys. Lett., 2022, 39(12): 040501
[3] Jin-Jie Li, Lian-Ren Wu, Jia-Yin Qi, Qi-Ming Sun. Modeling Information Popularity Dynamics via Branching Process on Micro-Blog Network[J]. Chin. Phys. Lett., 2017, 34(6): 040501
[4] Qing-Xian Wang, Jun-Jie Zhang, Xiao-Yu Shi, Ming-Sheng Shang. User Heterogeneity and Individualized Recommender[J]. Chin. Phys. Lett., 2017, 34(6): 040501
[5] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 040501
[6] FANG Pin-Jie, ZHANG Duan-Ming, HE Min-Hua, JIANG Xiao-Qin. Exact Solution for Clustering Coefficient of Random Apollonian Networks[J]. Chin. Phys. Lett., 2015, 32(08): 040501
[7] Hossam A. Ghany. Analytical Approach to Exact Solutions for the Wick-Type Stochastic Space-Time Fractional KdV Equation[J]. Chin. Phys. Lett., 2014, 31(06): 040501
[8] ZENG Ling-Zao, LIU Bing-Yang, XU Yi-Da, LI Jian-Long. Effect of Time Delay on Binary Signal Detection via a Bistable System[J]. Chin. Phys. Lett., 2014, 31(2): 040501
[9] YAN Xin, WU Yang. Topological and Spectral Perturbations in Complex Networks[J]. Chin. Phys. Lett., 2012, 29(12): 040501
[10] XU Yan, HUANG Hai-Jun, and YONG Gui. Modified Static Floor Field and Exit Choice for Pedestrian Evacuation[J]. Chin. Phys. Lett., 2012, 29(8): 040501
[11] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 040501
[12] MEI Li-Jie,WU Xin**,LIU Fu-Yao. A New Class of Scaling Correction Methods[J]. Chin. Phys. Lett., 2012, 29(5): 040501
[13] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 040501
[14] YUAN Xiao-Ping, CHEN Jiang-Xing, ZHAO Ye-Hua**, LOU Qin, WANG Lu-Lu, SHEN Qian . Spiral Wave Generation in a Vortex Electric Field[J]. Chin. Phys. Lett., 2011, 28(10): 040501
[15] YUAN Xiao-Ping, ZHENG Zhi-Gang** . Ground-State Transition in a Two-Dimensional Frenkel–Kontorova Model[J]. Chin. Phys. Lett., 2011, 28(10): 040501
Viewed
Full text


Abstract