CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Fabrication and Characterization of Fe-Doped In2O3 Dilute Magnetic Semiconducting Nanowires |
ZHANG Jun-Ran1, WU Zhen-Yao1, LIU Yu-Jie1, LV Zhan-Peng1, NIU Wei1, WANG Xue-Feng1**, DU Jun2, LIU Wen-Qing3, ZHANG Rong1, XU Yong-Bing1,3** |
1Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 2National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Department of Physics, Nanjing University, Nanjing 210093 3York-Nanjing International Center of Spintronics (YNICS), Department of Electronics, The University of York, YO10 3DD, United Kingdom
|
|
Cite this article: |
ZHANG Jun-Ran, WU Zhen-Yao, LIU Yu-Jie et al 2015 Chin. Phys. Lett. 32 037501 |
|
|
Abstract Fe-doped In2O3 dilute magnetic semiconducting nanowires are fabricated on Au-deposited Si substrates by the chemical vapor deposition technique. It is confirmed by energy dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy that Fe has been successfully doped into lattices of In2O3 nanowires. The EDS measurements reveal a large amount of oxygen vacancies existing in the Fe-doped In2O3 nanowires. The Fe dopant exists as a mixture of Fe2+ and Fe3+, as revealed by the XPS. The origin of room-temperature ferromagnetism in Fe-doped In2O3 nanowires is explained by the bound magnetic polaron model.
|
|
Published: 26 February 2015
|
|
PACS: |
75.10.-b
|
(General theory and models of magnetic ordering)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
06.60.-c
|
(Laboratory procedures)
|
|
|
|
|
[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von Molnar S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488 [2] Wang X F, Xu J B, Zhang B, Yu H G, Wang J, Zhang X, Yu J G and Li Q 2006 Adv. Mater. 18 2476 [3] Toyosaki H, Fukumura T, Yamada Y, Nakajima K, Chikyow T, Hasegawa T, Koinuma H and Kawasaki M 2004 Nat. Mater. 3 221 [4] Fitzgerald C, Venkatesan M, Dorneles L, Gunning R, Stamenov P, Coey J M D, Stampe P, Kennedy R, Moreira E and Sias U 2006 Phys. Rev. B 74 115307 [5] Shen Y, Turner S, Yang P, Van Tendeloo G, Lebedev O I and Wu T 2014 Nano Lett. 14 4342 [6] Onuma T, Fujioka S, Yamaguchi T, Higashiwaki M, Sasaki K, Masui T and Honda T 2013 Appl. Phys. Lett. 103 041910 [7] Mori S and Asano A 2010 J. Phys. Chem. C 114 13113 [8] Wang B, Zhou Z, Wu H Y and Zhu L F 2014 Nanoscale Res. Lett. 9 111 [9] Osiak M, Khunsin W, Armstrong E, Kennedy T, Torres C M, Ryan K M and O'Dwyer C 2013 Nanotechnology 24 065401 [10] Li C, Curreli M, Lin H, Lei B, Ishikawa F N, Datar R, Cote R J, Thompson M E and Zhou C W 2005 J. Am. Chem. Soc. 127 12484 [11] Zang W, Nie Y, Zhu D, Deng P, Xing L and Xue X 2014 J. Phys. Chem. C 118 9209 [12] Koida T, Shibata H, Kondo M, Tsutsumi K, Sakaguchi A, Suzuki M and Fujiwara H 2012 J. Appl. Phys. 111 063721 [13] Tseng W J, Tseng T T, Wu H M, Her Y C, Yang T J and Gouma P 2013 J. Am. Ceram. Soc. 96 719 [14] Yan S, Qiao W, Zhong W, Au C T and Dou Y 2014 Appl. Phys. Lett. 104 062404 [15] An Y, Yang D, Ma G, Zhu Y, Wang S, Wu Z and Liu J 2014 J. Phys. Chem. C 118 10448 [16] Hong N H, Sakai J, Huong N T and BrizéV 2005 Appl. Phys. Lett. 87 102505 [17] Xing G Z, Yi J B, Yan F, Wu T and Li S 2014 Appl. Phys. Lett. 104 202411 [18] An Y, Wang S, Duan L, Liu J and Wu Z 2013 Appl. Phys. Lett. 102 212411 [19] Philip J, Punnoose A, Kim B I, Reddy K M, Layne S, Holmes J O, Satpati B, Leclair P R, Santos T S and Moodera J S 2006 Nat. Mater. 5 298 [20] Gupta A, Cao H T, Parekh K and Rao K V 2007 J. Appl. Phys. 101 09N513 [21] Kim H, Osofsky M, Auyeung R C Y and PiquéA 2012 Appl. Phys. Lett. 100 142403 [22] Scherer V, Janowitz C, Krapf A, Dwelk H, Braun D and Manzke R 2012 Appl. Phys. Lett. 100 212108 [23] Nayak P K, Hedhili M N, Cha D and Alshareef H N 2013 Appl. Phys. Lett. 103 033518 [24] Lei F, Sun Y, Liu K, Gao S, Liang L, Pan B and Xie Y 2014 J. Am. Chem. Soc. 136 6826 [25] Shanmugasundaram A, Ramireddy B, Basak P, Manorama S V and Srinath S 2014 J. Phys. Chem. C 118 6909 [26] Yoo Y K, Xue Q, Lee H C, Cheng S, Xiang X D, Dionne G F, Xu S, He J, Chu Y S, Preite S D, Lofl S E and Takeuchi I 2005 Appl. Phys. Lett. 86 042506 [27] Feng Q, Blythe H J, Jiang F X, Xu X H, Heald S M, Fox A M and Gehring G A 2013 APL Mater. 1 022107 [28] Jahangir S, Dogan F, Kum H, Manchon A and Bhattacharya P 2012 Phys. Rev. B 86 035315 [29] Kum H, Heo J, Jahangir S, Banerjee A, Guo W and Bhattacharya P 2012 Appl. Phys. Lett. 100 182407 [30] Yu Z, He J, Xu S, Xue Q, van't Erve O, Jonker B, Marcus M, Yoo Y, Cheng S and Xiang X D 2006 Phys. Rev. B 74 165321 [31] Wang X F, Song F Q, Chen J, Wang T Y, Wang J L, Liu P, Shen M R Wan J G, Wang G H and Xu J B 2010 J. Am. Chem. Soc. 132 6492 [32] Zou C W, Wu H Z, Liang F, Xue S W and Shao L X 2014 Appl. Phys. Lett. 104 222105 [33] Farvid S S, Sabergharesou T, Hutfluss L N, Hegde M, Prouzet E and Radovanovic P V 2014 J. Am. Chem. Soc. 136 7669 [34] Wang X F, Wan B, Zhang K, Zhao B, Li Z, Wan X, Song F Q, Liu B, Xiu X Q, Xu Y B, Shi Y and Zhang R 2013 J. Phys. Chem. C 117 18258 [35] Wang X F, Zheng R K, Liu Z W, Ho H P, Xu J B and Ringer S P 2008 Nanotechnology 19 455702 [36] Koo B R, Park I K and Ahn H J 2014 J. Alloys Compd. 603 52 [37] Meng X Q and Li J B 2010 J. Phys. Chem. C 114 17569 [38] Yin W Y, Cao M H, Ni C Y, Cloutier S G, Huang Z G, Ma X, Ren L, Hu C W and Wei B Q 2009 J. Phys. Chem. C 113 19493 [39] Singhal S N A, Manjanna J, Jayakumar O D, Kadam R M and Tyagi A K 2009 J. Phys. Chem. C 113 3600 [40] Xing P F, Chen Y X, Yan S S, Liu G L, Mei L M and Zhang Z 2009 J. Appl. Phys. 106 043909 [41] Guan L, Tao J, Xiao Z, Zhao B, Fan X, Huan C, Kuo J and Wang L 2009 Phys. Rev. B 79 184412 [42] An Y, Wang S, Feng D, Wu Z and Liu J 2013 Appl. Surf. Sci. 276 535 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|