Chin. Phys. Lett.  2015, Vol. 32 Issue (03): 030401    DOI: 10.1088/0256-307X/32/3/030401
GENERAL |
Notes on Phase Transition of Nonsingular Black Hole
MA Meng-Sen1,2**, ZHAO Ren1,2
1Department of Physics, Datong University, Datong 037009
2Institute of Theoretical Physics, Datong University, Datong 037009
Cite this article:   
MA Meng-Sen, ZHAO Ren 2015 Chin. Phys. Lett. 32 030401
Download: PDF(427KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

On the belief that a black hole is a thermodynamic system, we study the phase transition of nonsingular black holes. If the black hole entropy takes the form of the Bekenstein–Hawking area law, the black hole mass M is no longer the internal energy of the black hole thermodynamic system. Using the thermodynamic quantities, we calculate the heat capacity, thermodynamic curvature and free energy. It is shown that there will be a larger black hole/smaller black hole phase transition for the nonsingular black hole. At the critical point, the second-order phase transition appears.

Published: 26 February 2015
PACS:  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/3/030401       OR      https://cpl.iphy.ac.cn/Y2015/V32/I03/030401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MA Meng-Sen
ZHAO Ren

[1] Bardeen J M, Carter B and Hawking S 1973 Commun. Math. Phys. 31 161
[2] Hawking S 1975 Commun. Math. Phys. 43 199
[3] Jacobson T 1995 Phys. Rev. Lett. 75 1260
[4] Chamblin A, Emparan R, Johnson C and Myers R 1999 Phys. Rev. D 60 064018
     Chamblin A, Emparan R, Johnson C and Myers R 1999 Phys. Rev. D 60 104026
[5] Peca C and Lemos J P S 1999 Phys. Rev. D 59 124007
[6] Wu X N 2000 Phys. Rev. D 62 124023
[7] Banerjee R, Modak S and Samanta S 2011 Phys. Rev. D 84 064024
[8] Dolan B P 2011 Class. Quantum Grav. 28 125020
[9] Cvetic M, Gibbons G W, Kubiznak D and Pope C N 2011 Phys. Rev. D 84 024037
[10] Kubizňák D and Mann R B 2012 J. High Energy Phys. 1207 033
[11] Niu C, Tian Y and Wu X N 2012 Phys. Rev. D 85 024017
[12] Wei S W and Liu Y X 2013 Phys. Rev. D 87 044014
[13] Cai R G, Cao L M, Li L and Yang R Q 2013 J. High Energy Phys. 1309 005
[14] Mo J X, Zeng X X, Li G Q, Jiang X and Liu W B 2013 J. High Energy Phys. 1310 056
[15] Zou D C, Zhang S J and Wang B 2014 Phys. Rev. D 89 044002
[16] Xu W, Xu H and Zhao L 2014 Eur. Phys. J. C 74 2970
[17] Dymnikova I 1992 Gen. Relativ. Gravit. 24 235
[18] Dymnikova I 1996 Int. J. Mod. Phys. D 5 529
[19] Dymnikova I, M Korpusik 2011 Entropy 13 1967
[20] Ayón-Beato E and García A 2000 Phys. Lett. B 493 149
[21] Bronnikov K A 2001 Phys. Rev. D 63 044005
[22] Nicolini P, Smailagic A and Spallucci E 2006 Phys. Lett. B 632 547
[23] Ma M S and Zhao R 2014 Class. Quantum Grav. 31 245014
[24] Akbar M, Salem N and Hussein S A 2012 Chin. Phys. Lett. 29 070401
[25] Quevedo H 2007 J. Math. Phys. 48 013506
[26] Quevedo H and Sánchez A 2008 J. High Energy Phys. 0809 034
[27] Quevedo H, Sánchez A, Taj S and Vázquez A 2011 Gen. Relativ. Gravit. 43 1153

Related articles from Frontiers Journals
[1] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 030401
[2] Chi-Kun Ding. Gravitational Perturbations in Einstein Aether Black Hole Spacetime[J]. Chin. Phys. Lett., 2018, 35(10): 030401
[3] Chang-Qing Liu, Chi-Kun Ding, Ji-Liang Jing. Effects of Homogeneous Plasma on Strong Gravitational Lensing of Kerr Black Holes[J]. Chin. Phys. Lett., 2017, 34(9): 030401
[4] Mahamat Saleh, Bouetou Bouetou Thomas, Timoleon Crepin Kofane. Energy and Thermodynamics of the Quantum-Corrected Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 030401
[5] Jun Liang. The $P$–$v$ Criticality of a Noncommutative Geometry-Inspired Schwarzschild-AdS Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 030401
[6] M. Azam, A. Aslam. Accretion onto the Magnetically Charged Regular Black Hole[J]. Chin. Phys. Lett., 2017, 34(7): 030401
[7] Xiao-Xiong Zeng, Xin-Yun Hu, Li-Fang Li. Effect of Phantom Dark Energy on Holographic Thermalization[J]. Chin. Phys. Lett., 2017, 34(1): 030401
[8] Jun-Jin Peng, Wen-Chang Xiang, Shao-Hong Cai. Abbott–Deser–Tekin Charge of Dilaton Black Holes with Squashed Horizons[J]. Chin. Phys. Lett., 2016, 33(08): 030401
[9] Belhaj A., Chabab M., El Moumni H., Masmar K., Sedra M. B.. On Hawking Radiation of 3D Rotating Hairy Black Holes[J]. Chin. Phys. Lett., 2015, 32(10): 030401
[10] ZHANG Ming, YUE Rui-Hong, YANG Zhan-Ying. Critical Behavior of Black Holes in an Einstein–Maxwell Gravity with a Conformal Anomaly[J]. Chin. Phys. Lett., 2015, 32(02): 030401
[11] LAI Chu-Yu, CHEN Ju-Hua, WANG Yong-Jiu. The Motion of Spinning Particles in the Spacetime of a Black Hole with a Cosmic String Topological Defect[J]. Chin. Phys. Lett., 2014, 31(09): 030401
[12] HE Tang-Mei, YANG Jin-Bo, ZHANG Jing-Yi. Corrected Stefan–Boltzmann Law and Lifespan of a Black Hole[J]. Chin. Phys. Lett., 2014, 31(08): 030401
[13] Ahmad Sheykhi. Quasi-Topological Cosmology from Emergence of Cosmic Space[J]. Chin. Phys. Lett., 2014, 31(2): 030401
[14] FANG Heng-Zhong, ZHOU Kai-Hu. Emission of Phonons from a Rotating Sonic Black Hole[J]. Chin. Phys. Lett., 2014, 31(1): 030401
[15] G. Abbas, R. M. Ramzan. Thermodynamics of Phantom Energy Accreting onto a Black Hole in Einstein–Power–Maxwell Gravity[J]. Chin. Phys. Lett., 2013, 30(10): 030401
Viewed
Full text


Abstract