Chin. Phys. Lett.  2015, Vol. 32 Issue (02): 027302    DOI: 10.1088/0256-307X/32/2/027302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
A Theoretical Investigation on Rectifying Performance of a Single Motor Molecular Device
LEI Hui**, TAN Xun-Qiong
Department of Electronics and Information Engineering, Changsha University of Science and Technology, Changsha 410004
Cite this article:   
LEI Hui, TAN Xun-Qiong 2015 Chin. Phys. Lett. 32 027302
Download: PDF(656KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report ab initio calculations of the transport behavior of a phenyl substituted molecular motor. The calculated results show that the transport behavior of the device is sensitive to the rotation degree of the rotor part. When the rotor part is parallel with the stator part, a better rectifying performance can be found in the current-voltage curve. However, when the rotor part revolves to vertical with the stator part, the currents in the positive bias region decrease slightly. More importantly, the rectifying performance disappears. Thus this offers us a new method to modulate the rectifying behavior in molecular devices.
Published: 20 January 2015
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  85.65.+h (Molecular electronic devices)  
  31.15.A- (Ab initio calculations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/2/027302       OR      https://cpl.iphy.ac.cn/Y2015/V32/I02/027302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LEI Hui
TAN Xun-Qiong
[1] Andzane J, Petkov N, Livshits A I, Boland J J, Holmes J D and Erts D 2009 Nano Lett. 9 1824
[2] Dresselhaus M S, Jorio A, Hofmann M, Dresselhaus G and Saito R 2010 Nano Lett. 10 751
[3] Lin Y and Connell J W 2012 Nanoscale 4 6908
[4] Liu Z H, Bol A A and Haensch W 2011 Nano Lett. 11 523
[5] Pawar N, Bohidar H B, Sharma A and Ghosh S 2013 Appl. Phys. Lett. 102 103109
[6] Ouyang F P and Xu H 2007 Chin. Phys. Lett. 24 2369
[7] Sheng W, Li Z Y, Ning Z Y, Zhang Z H, Yang Z Q and Guo H 2009 J. Chem. Phys. 113 244712
[8] Fan Z Q, Zhang Z H, Qiu M, Deng X Q and Tang G P 2012 Chin. Phys. Lett. 29 077305
[9] Wang H Q, Zhou B H, Chen X W, Sun C Q and Zhou G H 2012 J. Phys. Chem. C 116 2507
[10] Wu Q H, Zhao P and Liu D S 2014 Chin. Phys. Lett. 31 067302
[11] Aviram A and Ratner M A 1974 Chem. Phys. Lett. 29 277
[12] Kornilovitch P E, Bratkovsky A M and Williams R S 2002 Phys. Rev. B 66 165436
[13] Fan Z Q and Chen K Q 2010 Appl. Phys. Lett. 96 053509
[14] Zeng J, Chen K Q, He J, Zhang X J and Sun C Q 2011 J. Phys. Chem. C 115 25072
[15] Zhao P, Liu D S, Li S J and Chen G 2012 Solid State Commun. 152 2040
[16] Troisi A and Ratner M A 2004 Nano Lett. 4 591
[17] Xue Y Q and Ratner M A 2003 Phys. Rev. B 68 115406
[18] Koumura N, Geertsema E M, Meetsma A and Feringa B L 2000 J. Am. Chem. Soc. 122 12005
[19] Vicario J, Katsonis N, Ramon B S, Bastiaansen C W M, Broer D J and Feringa B L 2006 Nature 440 163
[20] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407
[21] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[22] Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P and S ánchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745
[23] Li Z Y, Qian H Y, Wu J, Gu B L and Duan W H 2008 Phys. Rev. Lett. 100 206802
[24] Büttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
[25] Long M Q, Chen K Q, Wang L L, Qing W, Zou B S and Shuai Z 2008 Appl. Phys. Lett. 92 243303
[26] Geng H, Yin S, Chen K Q and Shuai Z 2005 J. Phys. Chem. B 109 12304
[27] Pan J B, Zhang Z H, Deng X Q, Qiu M and Guo C 2011 Appl. Phys. Lett. 98 013503
[28] Kong G, Zhang Z H and Pan J B 2011 Appl. Phys. Lett. 99 123108
Related articles from Frontiers Journals
[1] Yeliang Wang. Orbit-Transfer Torque Switching[J]. Chin. Phys. Lett., 2022, 39(7): 027302
[2] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 027302
[3] Xing-Guo Ye, Peng-Fei Zhu, Wen-Zheng Xu, Nianze Shang, Kaihui Liu, and Zhi-Min Liao. Orbit-Transfer Torque Driven Field-Free Switching of Perpendicular Magnetization[J]. Chin. Phys. Lett., 2022, 39(3): 027302
[4] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 027302
[5] Fan Gao and Yongqing Li. Influence of Device Geometry on Transport Properties of Topological Insulator Microflakes[J]. Chin. Phys. Lett., 2021, 38(11): 027302
[6] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 027302
[7] Yi-Fan He , Lei-Xi Wang , Zhi-Xing Xiao , Ya-Wei Lv, Lei Liao , and Chang-Zhong Jiang . Normal Strain-Induced Tunneling Behavior Promotion in van der Waals Heterostructures[J]. Chin. Phys. Lett., 2020, 37(8): 027302
[8] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 027302
[9] Gufeng Fu, Fang Cheng. Anisotropic Transport on Monolayer and Multilayer Phosphorene in the Presence of an Electric Field[J]. Chin. Phys. Lett., 2019, 36(5): 027302
[10] Ze-Long He, Qiang Li, Kong-Fa Chen, Ji-Yuan Bai, Sui-Hu Dang. Fano Effect and Anti-Resonance Band in a Parallel-Coupled Double Quantum Dot System with Two Multi-Quantum Dot Chains[J]. Chin. Phys. Lett., 2018, 35(9): 027302
[11] Chu-Hong Yang, Shu-Yu Zheng, Jie Fan, Xiu-Nian Jing, Zhong-Qing Ji, Guang-Tong Liu, Chang-Li Yang, Li Lu. Transport Studies on GaAs/AlGaAs Two-Dimensional Electron Systems Modulated by Triangular Array of Antidots[J]. Chin. Phys. Lett., 2018, 35(7): 027302
[12] Hong-Jun Wang, Yuan-Yuan Zhu, Jing Zhou, Yong Liu. Electrical Conductivity of a Single Electro-deposited CoZn Nanowire[J]. Chin. Phys. Lett., 2018, 35(7): 027302
[13] Ze-Long He, Ji-Yuan Bai, Shu-Jiang Ye, Li Li, Chun-Xia Li. Quantum Switch and Efficient Spin-Filter in a System Consisting of Multiple Three-Quantum-Dot Rings[J]. Chin. Phys. Lett., 2017, 34(8): 027302
[14] Li-Ling Zhou, Xue-Yun Zhou, Rong Cheng, Cui-Ling Hou, Hong Shen. Local Heating in a Normal-Metal–Quantum-Dot–Superconductor System without Electric Voltage Bias[J]. Chin. Phys. Lett., 2017, 34(6): 027302
[15] Shi-Li Yan, Zhi-Jian Xie, Jian-Hao Chen, Takashi Taniguchi, Kenji Watanabe. Electrically Tunable Energy Bandgap in Dual-Gated Ultra-Thin Black Phosphorus Field Effect Transistors[J]. Chin. Phys. Lett., 2017, 34(4): 027302
Viewed
Full text


Abstract