FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
High-Pulse-Energy All-Normal-Dispersion Yb-Doped Fiber Laser Based on Nonlinear Polarization Evolution |
WANG Jun-Li1**, WANG Xue-Ling1, HE Bo-Rong1, WANG Yong-Gang3, ZHU Jiang-Feng1, WEI Zhi-Yi2 |
1School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071 2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 3State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119
|
|
Cite this article: |
WANG Jun-Li, WANG Xue-Ling, HE Bo-Rong et al 2015 Chin. Phys. Lett. 32 114202 |
|
|
Abstract We report an all-normal-dispersion ytterbium fiber laser mode locked by nonlinear polarization evolution. With a 347-m-long all-fiber ring cavity, a pulse energy of 263 nJ at a repetition rate of 613 kHz is achieved, which is the highest per-pulse energy directly obtained from an all-fiber mode-locked laser doped by ytterbium ions. The compact and operation-robust laser yields a well-shaped spectrum centered at 1032 nm with a bandwidth (FWHM) of 4 nm, and the slope efficiency is as high as 27.5%. The proposed low-repetition-rate high-pulse-energy mode-locked fiber laser will be a promising seed for all-fiber chirped pulsed amplification systems.
|
|
Received: 09 June 2015
Published: 01 December 2015
|
|
PACS: |
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.60.Rn
|
(Relaxation oscillations and long pulse operation)
|
|
|
|
|
[1] Liu X M, Cui Y D, Han D D, Yao X K and Sun Z P 2015 Sci. Rep. 5 09101 [2] Zian Ch T, Arman Z, Sin J T, Harith A and Sulaiman W H 2014 Chin. Phys. Lett. 31 124203 [3] Wang J L, Wang X L, He B R, Zhu J F, Wei Z Y and Wang Y G 2015 Chin. Phys. B 24 097601 [4] Duan L N, Liu X M, Mao D, Wang L R and Wang G X 2012 Opt. Express 20 265 [5] Gumenyuk R and Okhotnikov O G 2013 J. Opt. Soc. Am. B 30 776 [6] Ilday F ? Buckley J, Kuznetsova L and Wise F W 2003 Opt. Express 11 3550 [7] Zhou X Y, Dai Y, Yohei K and Kenji T 2008 Opt. Express 16 7055 [8] Zhou S , Ouzounov D G and Wise F W 2006 Opt. Lett. 31 1041 [9] Wang J L, Bu X B, Wang R, Zhang L, Zhu J F, Teng H, Han H N and Wei Z Y 2014 Appl. Opt. 53 5088 [10] Zhang Z X, Xu Z W and Zhang L 2012 Opt. Express 20 26736 [11] Xiao X S and Hua Y 2015 Chin. Phys. Lett. 32 024203 [12] Xie Y, Han H N, Liu W J and Wei Z Y 2015 Chin. Phys. Lett. 32 054211 [13] Lin J H, Wang D and Lin K H 2011 Laser Phys. Lett. 8 66 [14] Li P X, Zhao Z Q, Zhang M M, Liang B X, Chi J J, Yang C, Zhang G J, Hu H W, Yao Y F and Ma C M 2015 Appl. Phys. B 118 561 [15] Li W X, Hao Q, Yan M and Zeng H P 2009 Opt. Express 17 10113 [16] Zhu X J, Wang C H, Liu S X and Zhan G J 2012 IEEE Photon. Technol. Lett. 24 754 [17] Liu D F, Zhu X J, Wang C H, Yu J J, Zhang G J, Fang E X and Wang J J 2010 IEEE Photon. Technol. Lett. 22 1726 [18] Kobtsev S, Kukarin S and Fedotov Y 2008 Opt. Express 16 21936 [19] Liu D F, Zhu X J, Wang C H, Yu J J and Hu D F 2011 Appl. Opt. 50 484 [20] Nielsen C K and Keiding S R 2007 Opt. Lett. 32 1474 [21] Kong L J, Xiao X S and Yang C X 2010 Laser Phys. Lett. 7 359 [22] Lin J H, Jhu J L, Jyu S S, Lin T C and Lai Y C 2013 Laser Phys. 23 025103 [23] Song H Y, Xu L X, Gu C, Chen G L, Meng X L, Tao S, Zhang X M and Ming H 2013 SPIE. 90439043B1 [24] Lin J H, Lai B C and Lee Y W 2015 Laser Phys. 25 045101 [25] Yu H L, Wang X L, Zhou P, Xu X J and Chen J B 2015 IEEE Photon. Technol. Lett. 27 737 [26] Li S, Chen X, Kuksenkov D V, Koh J, Li M J, Zenteno L A and Nolan D A 2006 Opt. Express 14 6098 [27] Luo Z C, Xu W C, Song C X, Luo A P and Chen W C 2009 Chin. Phys. B 18 036 [28] Chernysheva M A, Krylov A A, Mou C, Arif R N, Rozhin A, Rummeli M H, Turitsyn S K and Dianov E M 2013 Eur. Conf. Opt. Commun. 39 1 [29] Peng J S, Zhan L, Luo S Y and Shen Q S 2013 J. Lightwave Technol. 31 2709 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|