Chin. Phys. Lett.  2015, Vol. 32 Issue (10): 107804    DOI: 10.1088/0256-307X/32/10/107804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Au Microdisk-Size Dependence of Quantum Dot Emission from the Hybrid Metal-Distributed Bragg Reflector Structures Employed for Single Photon Sources
WANG Hai-Yan1, SU Dan1, YANG Shuang1, DOU Xiu-Ming1, ZHU Hai-Jun1, JIANG De-Sheng1, NI Hai-Qiao1, NIU Zhi-Chuan1, ZHAO Cui-Lan2, SUN Bao-Quan1**
1State Key Laboratory for Superlattices and Microstructure, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2College of Physics and Electronic Information, Inner Mongolia University for Nationalities, Tongliao 028043
Cite this article:   
WANG Hai-Yan, SU Dan, YANG Shuang et al  2015 Chin. Phys. Lett. 32 107804
Download: PDF(683KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate metallic microdisk-size dependence of quantum dot (QD) spontaneous emission rate and micro-antenna directional emission effect for the hybrid metal-distributed Bragg reflector structures based on a particular single QD emission. It is found that the measured photoluminescence (PL) intensity is very sensitive to the size of metallic disk, showing an enhancement factor of 11 when the optimal disk diameter is 2 μm and the numerical aperture of microscope objective NA=0.5. It is found that for large metal disks, the Purcell effect is dominant for enhanced PL intensity, whereas for small size disks the main contribution comes from plasmon scattering at the disk edge within the light cone collected by the microscope objective.
Received: 09 July 2015      Published: 30 October 2015
PACS:  78.67.Hc (Quantum dots)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/10/107804       OR      https://cpl.iphy.ac.cn/Y2015/V32/I10/107804
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Hai-Yan
SU Dan
YANG Shuang
DOU Xiu-Ming
ZHU Hai-Jun
JIANG De-Sheng
NI Hai-Qiao
NIU Zhi-Chuan
ZHAO Cui-Lan
SUN Bao-Quan
[1] Santori C, Fattal D, Vu?kovi? J, Solomon G S and Yamamoto Y 2002 Nature 419 594
[2] Gérard J M, Sermage B, Gayral B, Legrand B, Costard E and Thierry-Mieg V 1998 Phys. Rev. Lett. 81 1110
[3] Badolato A, Hennessy K, Atatüre M, Dreiser J, Hu E, Petroff P M and Imamo?lu A 2005 Science 308 1158
[4] Urbanczyk A, Hamhuis G J and Notzel R 2010 Nanoscale Res. Lett. 5 1926
[5] Huck A, Kumar S, Shakoor A and Andersen U L 2011 Phys. Rev. Lett. 106 096801
[6] Yuan J Y, Jin C Y, Skacel M, Urbańczyk A, Xia T, Veldhoven P J van and Notzel R 2013 Appl. Phys. Lett. 102 191111
[7] LeBlanc S J, McClanahan M R, Jones M and Moyer P J 2013 Nano Lett. 13 1662
[8] Derom S, Bouhelier A, Kumar A, Leray A, Weeber J C, Buil S, Quélin X, Hermier J P and Colas des F G 2014 Phys. Rev. B 89 035401
[9] Gazzano O, Michaelis de Vasconcellos S, Gauthron K, Symonds C, Bloch J, Voisin P, Bellessa J, Lema?tre A and Senellart P 2011 Phys. Rev. Lett. 107 247402
[10] Braun T, Baumann V, Iff O, H?fling S, Schneider C and Kamp M 2015 Appl. Phys. Lett. 106 041113
[11] Sasin M E, Seisyan R P, Kalitteevski M A, Brand S, Abram R A, Chamberlain J M, Egorov A Yu, Vasil'ev A P, Mikhrin V S and Kavokin A V 2008 Appl. Phys. Lett. 92 251112
[12] Gazzano O, Michaelis de Vasconcellos S, Gauthron K, Symonds C, Voisin P, Bellessa J, Lema?tre A and Senellart P 2012 Appl. Phys. Lett. 100 232111
[13] Kaliteevski M, Iorsh I, Brand S, Abram R A, Chamberlain J M, Kavokin A V and Shelykh I A 2007 Phys. Rev. B 76 165415
[14] Esteban R, Teperik T V and Greffet J J 2010 Phys. Rev. Lett. 104 026802
[15] Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kurzinger K, Klar T A and Feldmann J 2008 Phys. Rev. Lett. 100 203002
[16] Lee K H, Green A M, Taylor R A, Sharp D N, Scrimgeour J, Roche O M, Na J H, Jarjour A F and Turberfield A J 2006 Appl. Phys. Lett. 88 193106
[17] Thon S M, Rakher M T, Kim H, Gudat J, Irvine W T M, M Petroff P and Bouwmeester D 2009 Appl. Phys. Lett. 94 111115
[18] Wang H Y, Dou X M, Yang S, Su D, Jiang D S, Ni H Q, Niu Z C and Sun B Q 2014 J. Appl. Phys. 115 123104
[19] Akselrod G M, Argyropoulos C, Hoang T B, Ciracì C, Fang C, Huang J N, Smith D R and Mikkelsen M H 2014 Nat. Photon. 8 835
[20] Visser H J 2012 Antenna Theory and Applications (New York: Wiley) chap 5 p 85
Related articles from Frontiers Journals
[1] Li-Guo Qin, Qin Wang. Modulating the Lasing Performance of the Quantum Dot-Cavity System by Adding a Resonant Driving Field[J]. Chin. Phys. Lett., 2017, 34(1): 107804
[2] Zun-Ren Lv, Hai-Ming Ji, Xiao-Guang Yang, Shuai Luo, Feng Gao, Feng Xu, Tao Yang. Large Signal Modulation Characteristics in the Transition Regime for Two-State Lasing Quantum Dot Lasers[J]. Chin. Phys. Lett., 2016, 33(12): 107804
[3] R. Nasehi, S. H. Asadpour, H. Rahimpour Soleimani, M. Mahmoudi. Controlling the Goos–Hänchen Shift via Incoherent Pumping Field and Electron Tunneling in the Triple Coupled InGaAs/GaAs Quantum Dots[J]. Chin. Phys. Lett., 2016, 33(01): 107804
[4] WU Xue-Fei, DOU Xiu-Ming, DING Kun, ZHOU Peng-Yu, NI Hai-Qiao, NIU Zhi-Chuan, ZHU Hai-Jun, JIANG De-Sheng, ZHAO Cui-Lan, SUN Bao-Quan. Second-Order Correlation Function for Asymmetric-to-Symmetric Transitions due to Spectrally Indistinguishable Biexciton Cascade Emission[J]. Chin. Phys. Lett., 2015, 32(12): 107804
[5] WANG Xiao-Bo, YAN Ling-Ling, LI Yong, LI Xin-Jian. Time-Resolved Photoluminescence Study of Silicon Nanoporous Pillar Array[J]. Chin. Phys. Lett., 2015, 32(09): 107804
[6] YANG Shuang, DOU Xiu-Ming, YU Ying, NI Hai-Qiao, NIU Zhi-Chuan, JIANG De-Sheng, SUN Bao-Quan. Single-Photon Emission from GaAs Quantum Dots Embedded in Nanowires[J]. Chin. Phys. Lett., 2015, 32(07): 107804
[7] ZHAO Shun-Cai, ZHANG Shuang-Ying, WU Qi-Xuan, JIA Jing. Left-Handedness with Three Zero-Absorption Windows Tuned by the Incoherent Pumping Field and Inter-Dot Tunnelings in a GaAs/AlGaAs Triple Quantum Dots System[J]. Chin. Phys. Lett., 2015, 32(5): 107804
[8] LI Shi-Guo, GONG Qian, CAO Chun-Fang, WANG Xin-Zhong, YAN Jin-Yi, WANG Hai-Long. Junction-Temperature Measurement in InAs/InP(100) Quantum-Dot Lasers[J]. Chin. Phys. Lett., 2015, 32(01): 107804
[9] FANG Dai-Feng, WANG Zhong-Ping, DAI Ru-Cheng, ZHANG Zeng-Ming, DING Ze-Jun. Temperature Dependence of Luminescence of CdS:Mn/ZnS Core-Shell Quantum Dots[J]. Chin. Phys. Lett., 2014, 31(05): 107804
[10] YANG Wen-Xing, CHEN Ai-Xi, BAI Yan-Feng, LU Jia-Wei. Carrier-Envelope-Phase Control of Single-Electron Transport in Coupled Quantum Dots[J]. Chin. Phys. Lett., 2013, 30(11): 107804
[11] LV Xue-Qin, JIN Peng, CHEN Hong-Mei, WU Yan-Hua, WANG Fei-Fei, WANG Zhan-Guo. Broadband Light Emission from Chirped Multiple InAs Quantum Dot Structure[J]. Chin. Phys. Lett., 2013, 30(11): 107804
[12] QU Jun-Rong, ZHENG Jian-Bang, WU Guang-Rong, CAO Chong-De. Bulk Heterojunction Photovoltaic Devices Based on a Poly(2-Methoxy, 5-Octoxy)-1, 4-Phenylenevinylene-Single Walled Carbon Nanotube-ZnSe Quantum Dots Active Layer[J]. Chin. Phys. Lett., 2013, 30(10): 107804
[13] ZHANG Shi-Zhu, YE Xiao-Ling, XU Bo, LIU Shu-Man, ZHOU Wen-Fei, WANG Zhan-Guo. Fabrication of Low-Density Long-Wavelength InAs Quantum Dots using a Formation-Dissolution-Regrowth Method[J]. Chin. Phys. Lett., 2013, 30(8): 107804
[14] LUO Shuai, JI Hai-Ming, GAO Feng, YANG Xiao-Guang, LIANG Ping, ZHAO Ling-Juan, YANG Tao. InAs/InGaAsP/InP Quantum Dot Lasers Grown by Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2013, 30(6): 107804
[15] YUE Li, GONG Qian, YAN Jin-Yi, CAO Chun-Fang, LIU Qing-Bo, WANG Yang, CHENG Ruo-Hai, WANG Hai-Long, LI Shi-Guo. High Intensity Single-Mode Peak Observed in the Lasing Spectrum of InAs/GaAs Quantum Dot Laser[J]. Chin. Phys. Lett., 2013, 30(2): 107804
Viewed
Full text


Abstract