CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Ab Initio Study of the Dynamical Si–O Bond Breaking Event in α-Quartz |
SU Rui1, ZHANG Hong1, HAN Wei2, CHEN Jun3,4** |
1College of Physical Science and Technology, Sichuan University, Chengdu 610064 2Research Center of Laser Fusion, Mianyang 621900 3Institute of Applied Physics and Computational Mathematics, Beijing 100094 4Center for Applied Physics and Technology, Peking University, Beijing 100871
|
|
Cite this article: |
SU Rui, ZHANG Hong, HAN Wei et al 2015 Chin. Phys. Lett. 32 107803 |
|
|
Abstract The Si–O bond breaking event in the -quartz at the first triplet (T1) excitation state is studied by using ab initio molecular dynamics (AIMD) and nudged elastic band calculations. A meta-stable non-bridging oxygen hole center and center (NBOHC-E') is observed in the AIMD which consists of a broken Si–O bond with a Si–O distance of 2.54?. By disallowing the re-bonding of the Si and O atoms, another defect configuration (III-Si/V-Si) is obtained and validated to be stable at both ground and excitation states. The NBOHC-E' is found to present on the minimal energy pathway of the initial to III-Si/V-Si transition, showing that the generating of the NBOHC-E' is an important step of the excitation induced structure defect. The energy barriers to produce the NBOHC-E' and III-Si/V-Si defects are calculated to be 1.19 and 1.28 eV, respectively. The electronic structures of the two defects are calculated by the self-consistent GW calculations and the results show a clear electron transition from the bonding orbital to the non-bonding orbital.
|
|
Received: 04 May 2015
Published: 30 October 2015
|
|
PACS: |
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
71.55.Jv
|
(Disordered structures; amorphous and glassy solids)
|
|
71.15.Qe
|
(Excited states: methodology)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
|
|
|
[1] Natoli J Y, Bertussi B and Commandré M 2005 Opt. Lett. 30 1315 [2] Fournier J, Néauport J, Grua P, Fargin E, Jubera V, Talaga D and Jouannigot S 2010 Opt. Express 18 21557 [3] Vaccaro L, Cannas M, Radzig V and Boscaino R 2008 Phys. Rev. B 78 075421 [4] Hosono H, Kajihara K, Suzuki T, Ikuta Y, Skuja L and Hirano M 2002 Solid State Commun. 122 117 [5] Uchino T, Takahashi M and Yoko T 2002 Appl. Phys. Lett. 80 1147 [6] Itoh C, Tanimura K, Itoh N and Itoh M 1989 Phys. Rev. B 39 183 [7] Van Ginhoven R M, Jonsson H, Peterson K A, Dupuis M and Corrales L R 2003 J. Chem. Phys. 118 6582 [8] Shluger A and Stefanovich E 1990 Phys. Rev. B 42 9664 [9] Saeta P and Greene B 1993 Phys. Rev. Lett. 70 3588 [10] Audebert P, Daguzan P and Santos A D 1994 Phys. Rev. Lett. 73 1990 [11] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [12] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 [13] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [14] Bl?chl P E 1994 Phys. Rev. B 50 17953 [15] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [16] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901 [17] Donadio D, Bernasconi M and Boero M 2001 Phys. Rev. Lett. 87 195504 [18] Bakos T, Rashkeev S and Pantelides S 2004 Phys. Rev. B 70 075203 [19] Anderson N L, Vedula R P, Schultz P A, Van Ginhoven R M and Strachan A 2011 Phys. Rev. Lett. 106 206402 [20] Tanimura K, Tanaka T and Itoh N 1983 Phys. Rev. Lett. 51 423 [21] Faleev S V, van Schilfgaarde M and Kotani T 2004 Phys. Rev. Lett. 93 126406 [22] Kresse G, Marsman M, Hintzsche L E and Flage-Larsen E 2012 Phys. Rev. B 85 045205 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|