GENERAL |
|
|
|
|
A Longitudinal Zeeman Slower Based on Ring-Shaped Permanent Magnets for a Strontium Optical Lattice Clock |
WANG Qiang1,2**, LIN Yi-Ge1, GAO Fang-Lin3, LI Ye1,2, LIN Bai-Ke1,2, MENG Fei1, ZANG Er-Jun1, LI Tian-Chu1, FANG Zhan-Jun1 |
1Division of Time and Frequency, National Institute of Metrology, Beijing 100013 2Department of Precision Instrument, Tsinghua University, Beijing 100084 3Research Institute of Petroleum Exploration and Development, Langfang 065007
|
|
Cite this article: |
WANG Qiang, LIN Yi-Ge, GAO Fang-Lin et al 2015 Chin. Phys. Lett. 32 100701 |
|
|
Abstract We report a longitudinal Zeeman slower based on ring-shaped permanent magnetic dipoles used for the strontium optical lattice clock. The Zeeman slower is composed of 40 permanent magnets with the same outer diameter but different inner diameters. The maximum variation of the axial field from its target values is less than 2%. In most parts of the Zeeman slower, the intensity variations of the field in radial spatial distribution are less than 0.1 mT. With this Zeeman slower, the strontium atoms are slowed down to 95 m/s, and approximately 2% of the total atoms are slowed down to less than 50 m/s.
|
|
Received: 01 July 2015
Published: 30 October 2015
|
|
PACS: |
07.55.Db
|
(Generation of magnetic fields; magnets)
|
|
32.60.+i
|
(Zeeman and Stark effects)
|
|
37.10.De
|
(Atom cooling methods)
|
|
|
|
|
[1] Pritchard D E, Cronin A D, Gupta S and Kokorowski D A 2001 Ann. Phys. (Leipzig) 10 35 [2] Sorrentino F, Ferrari G, Poli N, Drullinger R and Tino G M 2006 Mod. Phys. Lett. B 20 1287 [3] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71 [4] Ushijima I, Takamoto M, Das M, Ohkubo T and Katori H 2015 Nat. Photon. 9 185 [5] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W and Ludlow A D 2013 Science 341 1215 [6] Bouyer P 2013 Physics 6 92 [7] Weiner J, Bagnato V S, Zilio S and Julienne P S 1999 Rev. Mod. Phys. 71 1 [8] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 5221 [9] Phillips W D and Metcalf H 1982 Phys. Rev. Lett. 48 596 [10] Wang Q, Lin Y G, Li Y, Lin B K, Meng F, Zang E J, Li T C and Fang Z J 2014 Chin. Phys. Lett. 31 123201 [11] Wang Q, Lin B K, Zhao Y, Li Y, Wang S K, Wang M M, Zang E J, Li T C and Fang Z J 2011 Chin. Phys. Lett. 28 033201 [12] Lin Y G, Wang Q, Li Y Lin B K, Wang S K, Meng F, Zhao Y, Cao J P Zang E J, Li T C and Fang Z J 2013 Chin. Phys. Lett. 30 014206 [13] Wang S K, Wang Q, Lin Y G, Wang M M, Lin B K, Zang E J, Li T C and Fang Z J 2009 Chin. Phys. Lett. 26 093202 [14] Ovchinnikov Y B 2007 Opt. Commun. 276 261 [15] Ovchinnikov Y B 2008 Eur. Phys. J. Spec. Top. 163 95 [16] Reinaudi G, Osborn C B, Bega K and Zelevinsky T 2012 J. Opt. Soc. Am. B 29 4 [17] Cheiney P, Carraz O, Bartoszek-Bober D, Faure S, Vermersch F, Fabre C M, Gattobigio G L, Lahaye T, Guery-Odelin D and Mathevet R 2011 Rev. Sci. Instrum. 82 063115 [18] Ovchinnikov Y B 2012 Opt. Commun. 285 1175 [19] Lebedev V and Weld D M 2014 J. Phys. B: At. Mol. Opt. Phys. 47 155003 [20] Hill I R, Ovchinnikov Y B, Bridge E M, Curtis E A and Gill P 2014 J. Phys. B: At. Mol. Opt. Phys. 47 075006 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|