Chin. Phys. Lett.  2015, Vol. 32 Issue (10): 100501    DOI: 10.1088/0256-307X/32/10/100501
GENERAL |
Optimal Performance Analysis of a Three-Terminal Thermoelectric Refrigerator with Ideal Tunneling Quantum Dots
SU Hao, SHI Zhi-Cheng, HE Ji-Zhou**
Department of Physics, Nanchang University, Nanchang 330031
Cite this article:   
SU Hao, SHI Zhi-Cheng, HE Ji-Zhou 2015 Chin. Phys. Lett. 32 100501
Download: PDF(2597KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The model of a three-terminal thermoelectric refrigerator with ideal tunneling quantum dots is established. It consists of a cavity connected to two quantum dots embedded between two electron reservoirs at different temperatures and chemical potentials. According to the Landauer formula the expressions for the heat current, the cooling rate and the coefficient of performance (COP) are derived analytically. The performance characteristic curves of the cooling rate versus the coefficient of performance are plotted with numerical calculation. The optimal regions of the cooling rate and the COP are determined. Moreover, we optimize the cooling rate and the COP with respect to the position of energy level of the right quantum dot, respectively. The influence of the width of energy level and the temperature ratio on performance of the three-terminal thermoelectric refrigerator is analyzed. Lastly, when the width of energy level is small enough, the optimal performance of the refrigerator is discussed in detail.
Received: 16 June 2015      Published: 30 October 2015
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  85.80.Fi (Thermoelectric devices)  
  07.20.Mc (Cryogenics; refrigerators, low-temperature detectors, and other low-temperature equipment)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/10/100501       OR      https://cpl.iphy.ac.cn/Y2015/V32/I10/100501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SU Hao
SHI Zhi-Cheng
HE Ji-Zhou
[1] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[2] Pichanusakorn P and Bandaru P 2010 Mater. Sci. Eng. R 67 19
[3] Mahan G D and Sofo J O 1996 Proc. Natl. Acad. Sci. USA 93 7436
[4] Humphrey T E, Newbury R, Taylor R P and Linke H 2002 Phys. Rev. Lett. 89 116801
[5] Humphrey T E and Linke H 2005 Phys. Rev. Lett. 94 096601
[6] O'Dwyer M F, Humphrey T E and Linke H 2006 Nanotechnology 17 S338
[7] Esposito M, Lindenberg K and Van den Broeck C 2009 Europhys. Lett. 85 60010
[8] Muralidharan B and Grifoni M 2012 Phys. Rev. B 85 155423
[9] Zhang Y C, He J Z, He X and Xiao Y L 2013 Phys. Scr. 88 035002
[10] He J Z, Wang X M and Zhang Y C 2012 Int. J. Mod. Phys. B 26 1250134
[11] Scheibner R, Novik E G, Borzenko T, Konig M, Reuter D, Wieck A D, Buhmann H and Molenkamp L W 2007 Phys. Rev. B 75 041301
[12] Svensson S F, Persson A I, Hoffmann E A, Nakpathomkun N, Nilsson H A, Xu H Q, Samuelson L and Linke H 2012 New J. Phys. 14 033041
[13] Nakpathomkun N, Xu H Q and Linke H 2010 Phys. Rev. B 82 235428
[14] Luo X G and He J Z 2011 Acta Phys. Sin. 60 090506 (in Chinese)
[15] He J Z, Li C and Zhang Y C 2013 Chin. Phys. Lett. 30 100501
[16] Harman T C, Taylor P J, Walsh M P and Laforge B E 2002 Science 297 2229
[17] Venkatasubramanian R, Siivola E, Colpittes T and O'Quinn B 2001 Nature 413 597
[18] Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A and Heath J R 2008 Nature 451 168
[19] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554
[20] Liu N, Luo X G and Zhang M L 2014 Chin. Phys. B 23 080502
[21] He J Z, He B X and Miao G L 2011 Acta Phys. Sin. 60 040509 (in Chinese)
[22] Small J P, Perez K M and Kim P 2003 Phys. Rev. Lett. 91 256801
[23] Reddy P, Jang S Y, Segalman R and Majumdar A 2007 Science 315 1568
[24] Leijnse M, Wegewijs M R and Flensberg K 2010 Phys. Rev. B 82 045412
[25] Sanchez R and Buttiker M 2011 Phys. Rev. B 83 085426
[26] Sothmann B, Sanchez R, Jordan A N and Buttiker M 2012 Phys. Rev. B 85 205301
[27] Jordan A N, Sothmann B, Sanchez R and Buttiker M 2013 Phys. Rev. B 87 075312
[28] Sothmann B, Sanchez R, Jordan A N and Buttiker M 2013 New J. Phys. 15 095021
[29] Sothmann B and Buttiker M 2012 Europhys. Lett. 99 27001
[30] Entin-Wohlman O, Imry Y and Aharony A 2010 Phys. Rev. B 82 115314
[31] Entin-Wohlman O and Aharony A 2012 Phys. Rev. B 85 085401
[32] Jiang J H, Entin-Wohlman O and Imry Y 2012 Phys. Rev. B 85 075412
[33] Ruokola T and Ojanen T 2012 Phys. Rev. B 86 035454
[34] Sanchez R and Buttiker M 2012 Europhys. Lett. 100 47008
[35] Jiang J H, Entin-Wohlman O and Imry Y 2013 New J. Phys. 15 075021
[36] Bergenfeldt C, Samuelsson P, Sothmann B, Flindt C and Buttiker M 2014 Phys. Rev. Lett. 112 076803
[37] Sothmann B, Sanchez R and Jordan A N 2015 Nanotechnology 26 032001
[38] Jiang J H 2014 J. Appl. Phys. 116 194303
[39] Edwards H L, Niu Q and de Lozanne A L 1993 Appl. Phys. Lett. 63 1815
[40] Edwards H L, Niu Q, Georgakis G A and de Lozanne A L 1995 Phys. Rev. B 52 5714
[41] Prance J R, Smith C G, Griffiths J P, Chorley S J, Anderson D, Jones G A C, Farrer I and Ritchie D A 2009 Phys. Rev. Lett. 102 146602
Related articles from Frontiers Journals
[1] Mengmeng Xi, Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Coulomb Thermoelectric Drag in Four-Terminal Mesoscopic Quantum Transport[J]. Chin. Phys. Lett., 2021, 38(8): 100501
[2] Chen Wang, Lu-Qin Wang, and Jie Ren. Managing Quantum Heat Transfer in a Nonequilibrium Qubit-Phonon Hybrid System with Coherent Phonon States[J]. Chin. Phys. Lett., 2021, 38(1): 100501
[3] Xiaowei Liu, Jingyuan Guo, Zhibing Li. Critical One-Dimensional Absorption-Desorption with Long-Ranged Interaction[J]. Chin. Phys. Lett., 2019, 36(8): 100501
[4] Yu-Hong Zhang, Hui Liu, Ying-Rong Han, Ya-Fei Chen, Su-Hua Zhang, Yong Zhan. Temperature Impacts on Transient Receptor Potential Channel Mediated Calcium Oscillations in Astrocytes[J]. Chin. Phys. Lett., 2017, 34(9): 100501
[5] Nan-Xian Chen, Bo-Hua Sun. Note on Divergence of the Chapman–Enskog Expansion for Solving Boltzmann Equation [J]. Chin. Phys. Lett., 2017, 34(2): 100501
[6] Pei-Yan Peng, Chang-Kui Duan. A Maxwell Demon Model Connecting Information and Thermodynamics[J]. Chin. Phys. Lett., 2016, 33(08): 100501
[7] WEN Fa-Kai, YANG Zhan-Ying, CUI Shuai, CAO Jun-Peng, YANG Wen-Li. Spectrum of the Open Asymmetric Simple Exclusion Process with Arbitrary Boundary Parameters[J]. Chin. Phys. Lett., 2015, 32(5): 100501
[8] ZHOU Zong-Li, LI Min, YE Jian, LI Dong-Peng, LOU Ping, ZHANG Guo-Shun. The Heisenberg Model after an Interaction Quench[J]. Chin. Phys. Lett., 2014, 31(10): 100501
[9] LI Cong, ZHANG Yan-Chao, HE Ji-Zhou. A Nanosize Quantum-Dot Photoelectric Refrigerator[J]. Chin. Phys. Lett., 2013, 30(10): 100501
[10] Roumen Tsekov, Marga C. Lensen. Brownian Motion and the Temperament of Living Cells[J]. Chin. Phys. Lett., 2013, 30(7): 100501
[11] ZHANG Yan-Chao, HE Ji-Zhou. Efficiency at Maximum Power of a Quantum Dot Heat Engine in an External Magnetic Field[J]. Chin. Phys. Lett., 2013, 30(1): 100501
[12] Clóves G. Rodrigues. Onset for the Electron Velocity Overshoot in Indium Nitride[J]. Chin. Phys. Lett., 2012, 29(12): 100501
[13] XIAO Yao, HUA Da-Yin. Promotion of Cooperation in a Spatial Public Goods Game with Long Range Learning and Mobility[J]. Chin. Phys. Lett., 2012, 29(11): 100501
[14] WU An-Cai . Percolation of Mobile Individuals on Weighted Scale-Free Networks[J]. Chin. Phys. Lett., 2011, 28(11): 100501
[15] ZHANG Yan-Ping, HE Ji-Zhou**, XIAO Yu-Ling . An Approach to Enhance the Efficiency of a Brownian Heat Engine[J]. Chin. Phys. Lett., 2011, 28(10): 100501
Viewed
Full text


Abstract