CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Preparation and Magnetic Properties of SrFe12O19 Ferrites Suitable for Use in Self-Biased LTCC Circulators |
PENG Long1**, HU Yue-Bin2, GUO Cheng2, LI Le-Zhong1, WANG Rui1, HU Yun1, TU Xiao-Qiang1 |
1Sichuan Province Key Laboratory of Information Materials and Devices Application, Chengdu University of Information Technology, Chengdu 610225 2Post-Doctoral Innovation and Practice Base, Chengdu Industrial Vocational & Technical College, Chengdu 610213
|
|
Cite this article: |
PENG Long, HU Yue-Bin, GUO Cheng et al 2015 Chin. Phys. Lett. 32 017502 |
|
|
Abstract Strontium ferrites with different Bi2O3 content are prepared by the solid phase method, and their magnetic properties are investigated primarily. The Bi2O3 additive and sintering temperature separately exhibit a strong effect on the sintering density, crystal structure, and magnetic properties of the ferrites. As to the ferrites with 3 wt% Bi2O3, the relatively high sintering density ρs, saturation magnetization Ms, and intrinsic coercivity Hci can be obtained at a low sintering temperature of 900°C even much lower. Furthermore, the effective magnetic anisotropy constant Keff and magnetic anisotropy field Ha of the ferrites are calculated from the magnetization curve by the law of approach to saturation. It is suggested that the low-temperature sintered SrFe12O19 ferrites with Ms of 285.6 kA/m and Ha of 1564.6 kA/m possess a significant potentiality for applying in the self-biased low-temperature co-fired ceramics circulators from 34 to 40 GHz.
|
|
Published: 23 December 2014
|
|
PACS: |
75.47.Lx
|
(Magnetic oxides)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
81.20.Ev
|
(Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)
|
|
85.70.Ay
|
(Magnetic device characterization, design, and modeling)
|
|
|
|
|
[1] Kim H J, Kim Y J and Kim J R 2006 IEEE Trans. Magn. 42 2840 [2] Zhang Y P, Sun M, Chua K M, Wai L L and Liu D X 2008 Electron. Lett. 44 330 [3] Chu H, Guo Y X and Shi X Q 2011 Electron. Lett. 47 324 [4] Jensen T, Krozer V and Kjaergaard C 2011 Electron. Lett. 47 111 [5] Harris V G, Geiler A, Chen Y J, Yoon S D, Wu M Z, Yang A, Chen Z H, He P, Parimi P V, Zou X, Patton C E, Abe M, Acher O and Vittoria C 2009 J. Magn. Magn. Mater. 321 2035 [6] Ganne J P, Lebourgeios R, Pate M, Dubreuil D, Pinier L and Pascard H 2007 J. Eur. Cera. Soc. 27 2771 [7] Tsay C Y, Liu C Y, Liu K S, Lin I N, Hu L J and Yeh T S 2003 Mater. Chem. Phys. 79 138 [8] Kianvash A, Arghavanian R, Zakerifar S and Sheykholeslami M 2008 J. Alloys Compd. 461 432 [9] Karmazin R, Dernovsek O, Ilkov N, Wersing W, Roosen A and Hagymasi M 2005 J. Eur. Cera. Soc. 25 2029 [10] Li Y X, Liu Y L, Zhang H W and Han L K 2009 J. Appl. Phys. 105 07A745 [11] Liu Y L, Li Y X and Zhang H W 2010 J. Appl. Phys. 107 09A507 [12] Chen D M, Liu Y L Li Y X, Zhong W G and Zhang H W 2012 J. Magn. Magn. Mater. 324 449 [13] Feng Q Y 2002 Acta Phys. Sin. 51 2612 (in Chinese) [14] Korolev K A, Subramanian L and Afsar M N 2006 J. Appl. Phys. 99 08F504 [15] Yang Y J, Liu X S, Jin D L, Huang K and Gao S 2014 J. Magn. Magn. Mater. 355 254 [16] Batllet X, Obradors X, Carvajal J R, Pernet M, Cabanas M V and Vallet M 1991 J. Appl. Phys. 70 1614 [17] Liu P X, Jiao H Z, Zhang Y C, Lu H X, Du Y W and Wang T X 1985 Acta Phys. Sin. 34 129 (in Chinese) [18] Liu X S, Zhong W, Yang S, Jiang H Y, Gu B X and Du Y W 2002 Acta Phys. Sin. 51 1128 (in Chinese) [19] Peng L, Tu X Q, Li L Z and Wang R 2013 J. Nanoelectron. Optoelectron. 8 458 [20] Helszajn J and Mckay M 2006 IEEE Microwave Wireless Compon. Lett. 16 155 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|