ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Spectra of 42S1/2→32D5/2 Transitions of a Single Trapped 40Ca+ Ion |
GONG Shi-Jie1,2, ZHOU Fei1**, WU Hao-Yu1,2, WAN Wei1,2, CHEN Liang1, FENG Mang1** |
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2University of the Chinese Academy of Sciences, Beijing 100039
|
|
Cite this article: |
GONG Shi-Jie, ZHOU Fei, WU Hao-Yu et al 2015 Chin. Phys. Lett. 32 013201 |
|
|
Abstract We investigate the spectra of the electric quadrupole 42S1/2→32D5/2 transitions in a single 40Ca+ ion confined in a home-built linear trap. We probe the transitions with an ultra-narrow bandwidth laser at 729 nm. In a weak magnetic field, the quadrupole transition splits into ten components with the maximal line strength proportional to their squared Clebsch–Gordan factors. In a magnetic field of the order of Gauss, the observed equidistant sideband reflects the Zeeman substructure modulated by the quantized oscillation due to the secular motion in the trap. The temperature of the trapped ion can be determined by the envelope of the sideband spectrum. We also demonstrate the Rabi oscillation in a carrier transition after the ion has been Doppler cooled, which can be fitted by the model with the thermal state of motion.
|
|
Published: 23 December 2014
|
|
PACS: |
32.70.-n
|
(Intensities and shapes of atomic spectral lines)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
32.80.Qk
|
(Coherent control of atomic interactions with photons)
|
|
42.62.Fi
|
(Laser spectroscopy)
|
|
|
|
|
[1] Paul W 1990 Rev. Mod. Phys. 62 531 [2] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091 [3] Gulde S, Riebe M, Lancaster G P T, Becher C, Eschner J, H?ffner H, Schmidt-Kaler F, Chuang I L and Blatt R 2003 Nature 421 48 [4] Monz T, Schindler P, Barreiro J, Chwalla M, Nigg D, Coish W, Harlander M, H?nsel W, Hennrich M and Blatt R 2011 Phys. Rev. Lett. 106 130506 [5] Home J P, Hanneke D, Jost J D, Amini J M, Leibfried D and Wineland D J 2009 Science 325 1227 [6] Senko C, Smith J, Richerme P, Lee A, Campbell W C and Monroe C 2014 Science 345 430 [7] Nigg D, Müller M, Martinez E A, Schindler P, Hennrich M, Monz T, Martin-Delgado M A and Blatt A 2014 Science 345 302 [8] Richerme P, Gong Z X, Lee A, Senko C, Smith J, Foss-Feig M, Michalakis S, Gorshkov A V and Monroe C 2014 Nature 511 198 [9] Jurcevic P, Lanyon B P, Hauke P, Hempel C, Zoller P, Blatt R and Roos C F 2014 Nature 511 202 [10] Wilson A C, Colombe Y, Brown K R, Knill E, Leibfried D and Wineland D J 2014 Nature 512 57 [11] Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281 [12] Blatt R and Wineland D J 2008 Nature 453 1008 [13] Johanning M, Varón A F and Wunderlich C 2009 J. Phys. B 42 154009 [14] Zhou F, Xie Y, Xu Y Y, Li J M, Huang X R and Feng M 2010 Chin. Phys. Lett. 27 043201 [15] Zhou F, Xie Y, Xu Y Y, Huang X R and Feng M 2010 Chin. Phys. Lett. 27 123203 [16] Xie Y, Zhou F, Chen L, Wan W and Feng M 2011 Chin. Phys. Lett. 28 093201 [17] Xie Y, Wan W, Zhou F, Chen L, Lee C H and Feng M 2012 Chin. Phys. B 21 063201 [18] Xie Y, Wan W, Wu H Y, Zhou F, Chen L and Feng M 2013 Phys. Rev. A 87 053402 [19] Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J and Ward H 1983 Appl. Phys. B 31 97 [20] Black E D 2001 Am. J. Phys. 69 79 [21] Roos C F 2000 PhD Dissertation (Innsbruck: University of Innsbruck) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|