Chin. Phys. Lett.  2015, Vol. 32 Issue (01): 010601    DOI: 10.1088/0256-307X/32/1/010601
GENERAL |
Dick Effect in a Microwave Frequency Standard Based on Laser-Cooled 113Cd+ Ions
ZHANG Jian-Wei1,2, MIAO Kai1,2, WANG Li-Jun1,2,3**
1Department of Precision Instrument, Tsinghua University, Beijing 100084
2Joint Institute for Measurement Science, Tsinghua University, Beijing 100084
3Department of Physics, Tsinghua University, Beijing 100084
Cite this article:   
ZHANG Jian-Wei, MIAO Kai, WANG Li-Jun 2015 Chin. Phys. Lett. 32 010601
Download: PDF(547KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Dick effect is one of the main limits to the frequency stability of a passive frequency standard, especially for the fountain clock and ion clock operated in pulsed mode which require unavoidable dead time during interrogation. Here we measure the phase noise of the interrogation oscillator applied in the microwave frequency standard based on laser-cooled 113Cd+ ions, and analyze the Allan deviation limited by the Dick effect. The results indicate that the Dick effect is one of the key issues for the cadmium ion clock to reach expected frequency stability. This problem can be resolved by interrogating the local oscillator continuously with two ion traps.
Published: 23 December 2014
PACS:  06.30.Ft (Time and frequency)  
  06.20.Dk (Measurement and error theory)  
  37.10.Ty (Ion trapping)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/1/010601       OR      https://cpl.iphy.ac.cn/Y2015/V32/I01/010601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Jian-Wei
MIAO Kai
WANG Li-Jun
[1] Guinot B and Arias E F 2005 Metrologia 42 S20
[2] Zhou X J, Chen X Z, Chen J B, Wang Y Q and Li J M 2009 Chin. Phys. Lett. 26 090601
[3] Liu N F, Fang F, Chen W L, Lin P W, Wang P, Liu K, Suo R and Li T C 2013 Chin. Phys. Lett. 30 010601
[4] Huang Y, Cao J, Liu P, Ou B, Guan H, Huang X, Li T and Gao K 2012 Phys. Rev. A 85 030503
[5] Lü D S, Qu Q Z, Wang B, Zhao J B, Liu L and Wang Y Z 2011 Chin. Phys. Lett. 28 063201
[6] Santarelli G, Laurent Ph, Lemonde P and Clairon A 1999 Phys. Rev. Lett. 82 4619
[7] Vian C, Rosebusch P, Marion H, Bize S, Cacciapuoti L, Zhang S, Abgrall M, Chambon D, Maksimovic I, Laurent P, Santarelli G, Clairon A, Luiten A, Tobar M and Salomon C 2005 IEEE Trans. Instrum. Meas. 54 833
[8] Weyers S, Lipphardt B and Schnatz H 2009 Phys. Rev. A 79 031803
[9] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W and Ludlow A D 2013 Science 341 1215
[10] Bloom B J, Nicholson T L, Willianms J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
[11] Dick G J 1987 Precise Time Time Interval (Redondo Beach CA USA 1–3 December 1987) p 133
[12] Audoin C, Santarelli G, Makdissi A and Clairon C 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 877
[13] Santarelli G, Audoin C, Makdissi A, Laurent P, Dick G J and Clairon A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 887
[14] Dick G J, Prestage J D, Greenhall C A and Maleki L 1990 Precise Time Time Interval (Vienna VA USA 4–6 December 1990) p 487
[15] Dudle G, Joyet A, Berthoud P, Mileti G and Thomann P 2001 IEEE Trans. Instrum. Meas. 50 510
[16] Biedermann G, Takase K, Wu X, Deslauriers L, Roy S and Kasevich M A 2013 Phys. Rev. Lett. 111 170802
[17] Zhang J W, Wang S G, Miao K, Wang Z B and Wang L J 2014 Appl. Phys. B 114 183
[18] Wang S G, Zhang J W, Miao K, Wang Z B and Wang L J 2013 Opt. Express 21 12434
[19] Zhang J W, Wang Z B, Wang S G, Miao K, Wang B and Wang L J 2012 Phys. Rev. A 86 022523
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 010601
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 010601
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 010601
[4] Si-Jia Chao, Kai-Feng Cui, Shao-Mao Wang, Jian Cao, Hua-Lin Shu, Xue-Ren Huang. Observation of $^1\!S_0$$\rightarrow$$^3\!P_0$ Transition of a $^{40}$Ca$^+$-$^{27}$Al$^+$ Quantum Logic Clock[J]. Chin. Phys. Lett., 2019, 36(12): 010601
[5] Wen-Bing Li, Qiang Hao, Yuan-Bo Du, Shao-Qing Huang, Peter Yun, Ze-Huang Lu. Demonstration of a Sub-Sampling Phase Lock Loop Based Microwave Source for Reducing Dick Effect in Atomic Clocks[J]. Chin. Phys. Lett., 2019, 36(7): 010601
[6] Chao-qun Ma, Li-Fei Wu, Jiao Gu, Yan-He Chen, Guo-Qing Chen. Delay Effect on Coherent Transfer of Optical Frequency Based on a Triple-Pass Scheme[J]. Chin. Phys. Lett., 2018, 35(8): 010601
[7] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. Erratum: An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon [Chin. Phys. Lett. 33(2016)040601][J]. Chin. Phys. Lett., 2017, 34(10): 010601
[8] Zhao-Min Jia, Xu-Hai Yang, Bao-Qi Sun, Xiao-Ping Zhou, Bo Xiang, Xin-Yu Dou. Direct Digital Frequency Control Based on the Phase Step Change Characteristic between Signals[J]. Chin. Phys. Lett., 2017, 34(9): 010601
[9] Zhao-Yang Tai, Lu-Lu Yan, Yan-Yan Zhang, Xiao-Fei Zhang, Wen-Ge Guo, Shou-Gang Zhang, Hai-Feng Jiang. Transportable 1555-nm Ultra-Stable Laser with Sub-0.185-Hz Linewidth[J]. Chin. Phys. Lett., 2017, 34(9): 010601
[10] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 010601
[11] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 010601
[12] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 010601
[13] Meng-Jiao Zhang, Hui Liu, Xi Zhang, Kun-Liang Jiang, Zhuan-Xian Xiong, Bao-Long LÜ, Ling-Xiang He. Hertz-Level Clock Spectroscopy of $^{171}$Yb Atoms in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(07): 010601
[14] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 010601
[15] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon[J]. Chin. Phys. Lett., 2016, 33(04): 010601
Viewed
Full text


Abstract