Chin. Phys. Lett.  2015, Vol. 32 Issue (01): 010503    DOI: 10.1088/0256-307X/32/1/010503
GENERAL |
An Analytical Study on the Synchronization of Murali–Lakshmanan–Chua Circuits
G. Sivaganesh**
Alagappa Chettiar College of Engineering and Technology, Karaikudi Tamilnadu-630 004, India
Cite this article:   
G. Sivaganesh 2015 Chin. Phys. Lett. 32 010503
Download: PDF(696KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An explicit analytical solution is presented for unidirectionally coupled two Murali–Lakshmanan–Chua circuits exhibiting chaos synchronization in their dynamics. The transition of the system from an unsynchronized state to a state of complete synchronization under the influence of the coupling parameter is observed through phase portraits obtained from the analytical solutions of the circuit equations characterizing the system.
Published: 23 December 2014
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/1/010503       OR      https://cpl.iphy.ac.cn/Y2015/V32/I01/010503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
G. Sivaganesh
[1] Chua L O, Kocarev L, Eckert K and Itoh M 1992 Int. J. Bifurcation Chaos Appl. Sci. Eng. 2 705
[2] Chua L O, Kocarev L, Eckert K and Itoh M 1993 J. Circuits Syst. Comput. 3 93
[3] Murali K and Lakshmanan M 1993 Phys. Rev. E 48 R1624
[4] Murali K and Lakshmanan M 1994 Phys. Rev. E 49 4882
[5] Murali K and Lakshmanan M 1995 Int. J. Bifurcation Chaos Appl. Sci. Eng. 5 563
[6] Murali K and Lakshmanan M 1996 Chaos Nonlinear Oscillators: Controlling Synchronization (Singapore: World Scientific) chap 9 p 239
[7] Murali K and Lakshmanan M 1997 Int. J. Bifurcation Chaos Appl. Sci. Eng. 7 415
[8] Erjaee G H 2009 Chaos Solitons Fractals 39 1195
[9] Mahmoud G M and Mahmoud E E 2010 Nonlinear Dyn. 62 875
[10] Cafagna D and Grassi G 2012 Nonlinear Dyn. 68 117
[11] Mahmoud G M and Mahmoud E E 2012 Nonlinear Dyn. 67 1613
[12] Boccaletti 2002 Phys. Rep. 366 1
[13] Wang S, Yu Y G, Wang H and Rahmani A 2014 Chin. Phys. B 23 040502
[14] Murali K, Lakshmanan M and Leon O Chua 1994 IEEE Trans. Circuits Syst. 41 462
[15] Murali K, Lakshmanan M and Chua L O 1994 Int. J. Bifurcation Chaos Appl. Sci. Eng. 4 1511
[16] Murali K and Lakshmanan M 1995 Philos. Trans. A 353 33
[17] Lakshmanan M and Rajasekar S 2003 Nonlinear Dynamics: Integrability Chaos Patterns (Berlin: Springer) chap 6 p 173
[18] Thamilmaran K and Lakshmanan M 2002 Int. J. Bifurcation Chaos Appl. Sci. Eng. 12 783
[19] Thamilmaran K, Senthil Kumar D V, Lakshmanan M and Ishaq Ahamed A 2005 Int. J. Bifurcation Chaos Appl. Sci. Eng. 15 637
[20] Manimehan I, Thamilmaran K and Philominathan P 2009 Int. J. Bifurcation Chaos Appl. Sci. Eng. 19 2347
[21] Arulgnanam A, Thamilmaran K and Daniel M 2009 Chaos Solitons Fractals 42 2246
Related articles from Frontiers Journals
[1] Van Ha Nguyen, Hanjung Song. Impact of Temperature Variation on Performance of Carbon Nanotube Field-Effect Transistor–Based on Chaotic Oscillator: A Quantum Simulation Study[J]. Chin. Phys. Lett., 2015, 32(03): 010503
[2] NAM Sang Guk, NGUYEN Van Ha, SONG Hanjung. Photodiode-Based Chua's Circuit with Light Controllability[J]. Chin. Phys. Lett., 2014, 31(06): 010503
[3] Van Ha Nguyen, Han Jung Song . Bifurcation Analysis of the Voltage Controlled Photosensitive Chaotic Oscillator[J]. Chin. Phys. Lett., 2013, 30(6): 010503
[4] ZHOU Ji-Chao, SONG Han-Jung. Effect of Temperature on a Two-Phase Clock-Driven Discrete-Time Chaotic Circuit[J]. Chin. Phys. Lett., 2013, 30(2): 010503
[5] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 010503
[6] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 010503
[7] LI Hai-Yan**, HU Yun-An . Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(12): 010503
[8] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 010503
[9] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 010503
[10] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 010503
[11] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 010503
[12] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 010503
[13] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 010503
[14] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 010503
[15] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 010503
Viewed
Full text


Abstract