Chin. Phys. Lett.  2014, Vol. 31 Issue (09): 095205    DOI: 10.1088/0256-307X/31/9/095205
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Temporal Evolution of Excited Level Populations in a High-Velocity Argon Plasma Flow
SUN Su-Rong, WANG Hai-Xing**
School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 100191
Cite this article:   
SUN Su-Rong, WANG Hai-Xing 2014 Chin. Phys. Lett. 31 095205
Download: PDF(551KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A simplified collisional-radiative model is applied to a high velocity plasma flow through the arcjet nozzle to investigate the temporal evolution of excited level population densities in the selected spatial positions inside arcjet thruster. Computations are carried out for various sets of input parameters such as electron temperature, electron number density, atom temperature, and pressure. The numerical results illustrate that the extent of the ionization-recombination non-equilibrium is strongly dependent on the electron temperature and pressure, and is significantly affected by resonance radiation.
Published: 22 August 2014
PACS:  52.25.Fi (Transport properties)  
  51.10.+y (Kinetic and transport theory of gases)  
  51.20.+d (Viscosity, diffusion, and thermal conductivity)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/9/095205       OR      https://cpl.iphy.ac.cn/Y2014/V31/I09/095205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Su-Rong
WANG Hai-Xing
[1] Huang H J, Pan W X and Wu C K 2008 Chin. Phys. Lett. 25 4058
[2] Pan W X, Li T and Wu C K 2009 Chin. Phys. Lett. 26 125201
[3] Wang H X, Chen X, Pan W X, Murphy A B, Geng J Y, Jia S X 2010 Plasma Sci. Technol. 12 692
[4] Wang H X, Geng J Y, Chen X, Pan W X and Murphy A B 2010 Plasma Chem. Plasma Process. 30 707
[5] Sijde V B, Mullen J V and Schram D 1984 Beitr. Plasmaphys. 24 447
[6] Drawin H 1976 Pure Appl. Chem. 48 133
[7] Bultel A, Ootegem B, Bourdon A and Vervisch P 2002 Phys. Rev. E 65 046406
[8] Bogaerts A, Gijbels R and Vlcek J 1998 J. Appl. Phys. 84 121
[9] Vlcek J 1989 J. Phys. D: Appl. Phys. 22 623
[10] Zhu X M and Pu Y K 2007 J. Phys. D: Appl. Phys. 40 2533
[11] Wei F Z, Wang H X, Murphy A B and Liu Y 2013 J. Phys. D: Appl. Phys. 46 505205
[12] Wang H X, Sun W P, Sun S R, Murphy A B and Ju Y 2014 Plasma Chem. Plasma Process. 34 559
[13] Wang H X, Wei F Z, Murphy A B and Liu Y 2012 J. Phys. D: Appl. Phys. 45 235202
[14] Zhu X M and Pu Y K 2010 J. Phys. D: Appl. Phys. 43 015204
[15] Sawada K and Fujimoto T 1994 Phys. Rev. E 49 5565
Related articles from Frontiers Journals
[1] Zeren Zhang and Jiping Huang. Transformation Plasma Physics[J]. Chin. Phys. Lett., 2022, 39(7): 095205
[2] Ming Xu, Guoqiang Zhong, Baolong Hao, Wei Shen, Liqun Hu, Wei Chen, Zhiyong Qiu, Xuexi Zhang, Youjun Hu, Yingying Li, Hailin Zhao, Haiqing Liu, Bo Lyu, and the EAST Team. Excitation of RSAEs during Sawteeth-Like Oscillation in EAST[J]. Chin. Phys. Lett., 2021, 38(8): 095205
[3] Yunpeng Zou, V. S. Chan, Wei Chen, Yongqin Wang, Yumei Hou, and Yiren Zhu. Energetic Particle Transport Prediction for CFETR Steady State Scenario Based on Critical Gradient Model[J]. Chin. Phys. Lett., 2021, 38(4): 095205
[4] Wei-Jie Mai, Yi-Lin Wang, Yun-Yun Zhang, Lu-Na Cui, Li Yu. Refractive Plasmonic Sensor Based on Fano Resonances in an Optical System[J]. Chin. Phys. Lett., 2017, 34(2): 095205
[5] M. Lafouti, M. Ghoranneviss. Bias Effects on the Reynolds Stress Using the Multi-Purpose Probe in IR-T1 Tokamak[J]. Chin. Phys. Lett., 2016, 33(01): 095205
[6] ZHANG Xiao-Hui, LIU A-Di, ZHOU CHU, HU Jian-Qiang, WANG Ming-Yuan, YU Chang-Xuan, LIU Wan-Dong, LI Hong, LAN Tao, XIE Jin-Lin. Comparison of Three Methods in Extracting Coherent Modes from a Doppler Backscatter System[J]. Chin. Phys. Lett., 2015, 32(12): 095205
[7] Lafouti M., Ghoranneviss M.. MF-DFA Analysis of Turbulent Transport Measured by a Multipurpose Probe[J]. Chin. Phys. Lett., 2015, 32(10): 095205
[8] PENG Xiao-Dong, QU Hong-Peng, XU Jian-Qiang, HAN Zui-Jiao. Self-Organized Criticality Theory Model of Thermal Sandpile[J]. Chin. Phys. Lett., 2015, 32(09): 095205
[9] ZHANG Xin-Yuan, WANG Lu-Lu, CHEN Zhao, CUI Lu-Na, SHANG Ce, ZHAO Yu-Fang, DUAN Gao-Yan, LIU Jian-Bin, YU Li. The Line Shape of Double-Sided Tooth-Disk Waveguide Filters Based on Plasmon-Induced Transparency[J]. Chin. Phys. Lett., 2015, 32(5): 095205
[10] SUN Tian-Tian, CHEN Shao-Yong, WANG Zhan-Hui, PENG Xiao-Dong, HUANG Jie, MOU Mao-Lin, TANG Chang-Jian. Anomalous Convection Reversal due to Turbulence Transition in Tokamak Plasmas[J]. Chin. Phys. Lett., 2015, 32(03): 095205
[11] SHANG Ce, CHEN Zhao, WANG Lu-Lu, ZHAO Yu-Fang, DUAN Gao-Yan, YU Li. Characteristics of the Coupled-Resonator Structure Based on a Stub Resonator and a Nanodisk Resonator[J]. Chin. Phys. Lett., 2014, 31(11): 095205
[12] WANG Wei-Zong, RONG Ming-Zhe, YANG Fei, WU Yi. Transport Coefficients of High Temperature SF6 in Local Thermodynamic Equilibrium Using a Phenomenological Approach[J]. Chin. Phys. Lett., 2014, 31(03): 095205
[13] ZHANG Lu, YANG Shu. Modified Hybrid Plasmonic Waveguides as Tunable Optical Tweezers[J]. Chin. Phys. Lett., 2013, 30(3): 095205
[14] CHEN Zhao, SONG Gang, YU Li, CHEN Jian-Jun, XIAO Jing-Hua. Compact Wavelength Demultiplexer Structure Based on Side-Coupled Cavities[J]. Chin. Phys. Lett., 2012, 29(10): 095205
[15] HUANG Cheng-Wu, SONG Tian-Ming, ZHAO Yang, ZHU Tuo, SHANG Wan-Li, XIONG Gang, ZHANG Ji-Yan, YANG Jia-Min, JIANG Shao-En. Effective Opacity for Gold-Doped Foam Plasmas[J]. Chin. Phys. Lett., 2012, 29(9): 095205
Viewed
Full text


Abstract