Chin. Phys. Lett.  2014, Vol. 31 Issue (09): 094601    DOI: 10.1088/0256-307X/31/9/094601
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Crack Arrest in Brittle Ceramics Subjected to Thermal Shock and Ablation
WANG Yan-Wei1,2, YU He-Long3, TANG Hong-Xiang1,2, FENG Xue1,2**
1AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084
2Center for Mechanics and Materials, Tsinghua University, Beijing 100084
3College of Information Technology, Jilin Agricultural University, Changchun 130118
Cite this article:   
WANG Yan-Wei, YU He-Long, TANG Hong-Xiang et al  2014 Chin. Phys. Lett. 31 094601
Download: PDF(1311KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ceramics are suitable for high temperature applications, especially for aerospace materials. When serving in high temperature environments, ceramics usually have to deal with the challenge of both thermal shock and ablation. We report the crack arrest in brittle ceramics during thermal shock and ablation. In our experiment, the specimens of Al2O3 are subjected to oxygen-propane flame heating until the temperature arises up to 1046°C and then are cooled down in air. The crack occurs, however, it does not propagate when arrested by the microstructures (e.g., micro-bridges) of the crack tip. Such micro-bridge enhances the toughness of the brittle ceramics and prevents the crack propagation, which provides a hint for design of materials against the thermal shock.
Published: 22 August 2014
PACS:  46.50.+a (Fracture mechanics, fatigue and cracks)  
  81.05.Mh (Cermets, ceramic and refractory composites)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/9/094601       OR      https://cpl.iphy.ac.cn/Y2014/V31/I09/094601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Yan-Wei
YU He-Long
TANG Hong-Xiang
FENG Xue
[1] Munz D, Fett T 1999 Ceramics: Mechanical Properties, Failure Behavior, Materials Selection (Berlin: Springer Verlag)
[2] Lu A J 2013 Acta Phys. Sin. 62 217101 (in Chinese)
[3] Wang W T et al 2013 Acta Phys. Sin. 62 210601 (in Chinese)
[4] Zhang Y D et al 2013 Chin. Phys. B 22 084102
[5] Xu X et al 2006 Pure Appl. Geophys. 163 1751
[6] Lanin A, Fedik I 2008 Thermal Stress Resistance of Materials (New York: Springer)
[7] Krommer M 2004 Acta Mech. 171 59
[8] Manson S S and Smith R W 1955 J. Am. Ceram. Soc. 38 18
[9] Yongle S et al 2011 Key Eng. Mater. 462 383
[10] Shaohua C and Tzuchiang W 2001 Acta Mech. Sin. 17 269
[11] Winkelmann A and Schott O 1894 Ann. Phys. (Berlin) 287 730
[12] Kingery W 1959 Properties Measurement at High Temperature (New York: Wiley)
[13] Pisarenko G S 1969 High-Temperature Strength of Materials (Washington DC: Israel Program for Scientific Translations)
[14] Hasselman D 1963 J. Am. Ceram. Soc. 46 535
[15] Tang S et al 2007 Mater. Sci. Eng. A 465 1
[16] Hasselman D P H 1963 J. Am. Ceram. Soc. 46 229
[17] Li W G et al 2012 Appl. Math. Mech. 33 1351
Related articles from Frontiers Journals
[1] Shan Hu, Pengyu Xu, Luize Scalco de Vasconcelos, Lia Stanciu, Hongwei Ni, and Kejie Zhao. Elastic Modulus, Hardness, and Fracture Toughness of Li$_{6.4}$La$_{3}$Zr$_{1.4}$Ta$_{0.6}$O$_{12}$ Solid Electrolyte[J]. Chin. Phys. Lett., 2021, 38(9): 094601
[2] GAO Zhi-Wen, ZHOU You-He. Mode-II Crack Problem for a Long Rectangular Slab of Superconductor under an Electromagnetic Force[J]. Chin. Phys. Lett., 2009, 26(2): 094601
Viewed
Full text


Abstract