Chin. Phys. Lett.  2014, Vol. 31 Issue (09): 090202    DOI: 10.1088/0256-307X/31/9/090202
GENERAL |
A Class of Two-Component Adler–Bobenko–Suris Lattice Equations
FU Wei1, ZHANG Da-Jun1**, ZHOU Ru-Guang2
1Department of Mathematics, Shanghai University, Shanghai 200444
2School of Mathematics Science, Jiangsu Normal University, Xuzhou 221116
Cite this article:   
FU Wei, ZHANG Da-Jun, ZHOU Ru-Guang 2014 Chin. Phys. Lett. 31 090202
Download: PDF(466KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study a class of two-component forms of the famous list of the Adler–Bobenko–Suris lattice equations. The obtained two-component lattice equations are still consistent around the cube and they admit solutions with 'jumping properties' between two levels.
Published: 22 August 2014
PACS:  02.30.Ik (Integrable systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/9/090202       OR      https://cpl.iphy.ac.cn/Y2014/V31/I09/090202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FU Wei
ZHANG Da-Jun
ZHOU Ru-Guang
[1] Nijhoff F W and Walker A J 2001 Glasgow Math. J. 43A 109
[2] Nijhoff F W 2002 Phys. Lett. A 297 49
[3] Adler V E, Bobenko A I and Suris Yu B 2003 Commun. Math. Phys. 233 513
[4] Tongas A and Nijhoff F W 2005 Glasgow Math. J. 47 205
[5] Hietarinta J and Zhang D J 2009 J. Phys. A: Math. Theor. 42 404006
[6] Hietarinta J and Zhang D J 2010 J. Math. Phys. 51 033505
[7] Hietarinta J and Zhang D J 2011 SIGMA 7 061
[8] Nong L J, Zhang D J, Shi Y and Zhang W Y 2013 Chin. Phys. Lett. 30 040201
[9] Hietarinta J 2011 J. Phys. A: Math. Theor. 44 165204
[10] Zhang D J, Zhao S L and Nijhoff F W 2012 Stud. Appl. Math. 129 220
[11] Nijhoff F W 1999 Discrete Integrable Geometry and Physics ed Bobenko A I, Seiler R (Oxford: Oxford University Press) chap 8 p 209
[12] Bridgman T, Hereman W, Quispel G R W and van der Kamp P 2013 Found. Comput. Math. 13 517
[13] Wu H, Zheng H C and Zhang D J 2014 Commun. Appl. Math. Comput. (accepted)
[14] Hirota R and Satsuma J 1976 J. Phys. Soc. Jpn. 40 891
[15] Oevel W, Zhang H and Fuchssteiner B 1989 Prog. Theor. Phys. 81 294
[16] Khanizadeh F, Mikhailov A V and Wang J P 2013 Theor. Math. Phys. 177 1606
[17] Zhang D J, Cheng J W and Sun Y Y 2013 J. Phys. A: Math. Theor. 46 265202
[18] Cheng J W and Zhang D J 2013 Front. Math. Chin. 8 1001
[19] Adler V E, Bobenko A I and Suris Yu B 2012 Int. Math. Res. Not. 2012 1822
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 090202
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 090202
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 090202
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 090202
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 090202
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 090202
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 090202
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 090202
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 090202
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 090202
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 090202
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 090202
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 090202
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 090202
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 090202
Viewed
Full text


Abstract