Chin. Phys. Lett.  2014, Vol. 31 Issue (08): 088701    DOI: 10.1088/0256-307X/31/8/088701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Hydrogen Sulfide Detection Using a Gold Nanoparticle/Metalloprotein Based Probe
Meisam Omidi1,2, Gh. Amoabediny1,2, F. Yazdian1,2**, M. Habibi-Rezaei3,4
1Faculty of New Science and Technology University of Tehran, Tehran, Iran
2Research Center for New Technologies in Life-Science Engineering, University of Tehran, Tehran, Iran
3School of Biology, College of Science, University of Tehran, Tehran, Iran
4Nanobiomedicine Center of Excellance, University of Tehran, Tehran, Iran
Cite this article:   
Meisam Omidi, Gh. Amoabediny, F. Yazdian et al  2014 Chin. Phys. Lett. 31 088701
Download: PDF(554KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a simple method for direct detection of hydrogen sulfide (H2S) in an aqueous solution. This method represents a novel biosensor based on metalloprotein cytochrome c (cyt c) with the localized surface plasmon resonance of gold nanoparticles (AuNPs). For this purpose, we develop a new approach based on attaching chemically-modified cyt c onto AuNPs. Here, by reacting H2S with protein heme center, its conformation changes in the locality of the heme moiety. The conformational changes occurring in the protein alter the spectral characteristics by changing the dielectric properties of AuNPs. The conformational changes of cyt c induced by the H2S interaction are characterized by the UV-visible absorption spectroscopy and the circular dichroism technique. The limit of the detection and sensitivity of the AuNPs/cyt c biosensor are evaluated by using UV-visible spectroscopy. According to the experiments, it is revealed that H2S can be detected at a concentration of 4.0 μM (1.3 ppb) by the fabricated AuNPs/cyt c biosensor. In addition, the sensor retains activity and gives reproducible results after storage in 4°C for 60 d. This simple and cost-effective sensing platform provides a rapid and convenient detection for H2S at concentrations far below the hazardous limit.
PACS:  87.85.fk (Biosensors)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  87.14.E  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/8/088701       OR      https://cpl.iphy.ac.cn/Y2014/V31/I08/088701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Meisam Omidi
Gh. Amoabediny
F. Yazdian
M. Habibi-Rezaei
[1] Reiffenstein R et al 1992 Annu. Rev. Pharmacol. Toxicol. 32 109
[2] Chen C et al 2007 Acta Pharmacol. Sin. 28 1709
[3] Yang G et al 2008 Science 322 587
[4] Tangerman A 2009 J. Chromatogr. B: Analyt. Technol. Biomed. Life. Sci. 877 3366
[5] Giovanelli D et al 2003 Sens. Actu. B Chem. 88 320
[6] Doeller J et al 2005 Anal. Biochem. 341 40
[7] Wu X et al 2007 Meas. Sci. Technol. 18 1315
[8] Rodríguez-Fernández J et al 1999 Anal. Chim. Acta 398 23
[9] Galardon E et al 2009 Dalton Trans. 42 9126
[10] Mayer K and Hafner J H 2011 Chem. Rev. 111 3828
[11] Zhang J et al 2011 ACS Appl. Mater. Inter. 3 2928
[12] Chen et al 2011 Anal. Chem. 83 9450
[13] Derbyshire E and Marletta M 2012 Annu. Rev. Biochem. 81 533
[14] Strianese M et al 2011 Protein Pept. Lett. 18 282
[15] Strianese M et al 2012 Inorg. Chem. 51 11220
[16] Fujiwar K et al 2009 Anal. Sci. Feb. 25 241
[17] Pérez-Juste J et al 2005 Coord. Chem. Rev. 249 1870
[18] Mattson B et al 2003 Gas Chemistry Book (Educational Innovations) p 150
[19] Willets K A and Van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267
[20] Suarez G et al 2013 Biosens. Bioelec. 42 385
[21] Mie G 1908 Ann. Phys. 330 377
[22] Aden A L and Kerker M 1951 J. Appl. Phys. 22 1242
[23] Du H 2004 Appl. Opt. 43 1951
[24] Ovidio P et al 2011 Int. J. Spectrosc. 58 3743
[25] Yang W 2003 Appl. Opt. 42 1710
[26] Yeung C et al 1999 Langmuir 15 6829
[27] Bukun N et al 2003 J. Sol. St. Electroch. 7 122
[28] Zhou G et al 2013 Tetrahedron 69 867
[29] Amoabediny G et al 2014 Enz. Micro. Tech. 63 7
Related articles from Frontiers Journals
[1] Zhang-Cai Long, Yan-Ping Zhang, and Lin Luo. Second Virtual Pitch Shift in Cochlea Observed In Situ via Laser Interferometry[J]. Chin. Phys. Lett., 2021, 38(2): 088701
[2] Zhang-Cai Long, Tao Shen, Yan-Ping Zhang, Lin Luo. Pitch Shift in Exsomatized Cochlea Observed by Laser Interferometry[J]. Chin. Phys. Lett., 2019, 36(2): 088701
[3] Meisam Omidi, Gh. Amoabediny, F. Yazdian, M. Habibi-Rezaei. Protein Based Localized Surface Plasmon Resonance Gas Sensing[J]. Chin. Phys. Lett., 2015, 32(01): 088701
[4] Meisam Omidi, M. A. Malakoutian, Mohammadmehdi Choolaei, F. Oroojalian, F. Haghiralsadat, F. Yazdian . A Label-Free Detection of Biomolecules Using Micromechanical Biosensors[J]. Chin. Phys. Lett., 2013, 30(6): 088701
[5] XU Bin-Zong, LIU Jie-Tao, HU Hai-Feng, WANG Li-Na, WEI Xin, SONG Guo-Feng. A High Sensitivity Index Sensor Based on Magnetic Plasmon Resonance in Metallic Grating with Very Narrow Slits[J]. Chin. Phys. Lett., 2013, 30(4): 088701
Viewed
Full text


Abstract