Chin. Phys. Lett.  2014, Vol. 31 Issue (08): 088102    DOI: 10.1088/0256-307X/31/8/088102
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Enhanced Depth of Lift-off Pattern Defined with Soft Mold Ultraviolet Nanoimprint by Multi-Layer Masks
WANG Zhi-Hao1**, LIU Wen1**, ZUO Qiang1, WANG Lei2, ZHAO Yan-Li1, XU Zhi-Mou1
1Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic information, Huazhong University of Science and Technology, Wuhan 430074
2State Key Laboratory of Optical Communication Technologies and Networks, Wuhan Research Institute of Posts and Telecommunications, Wuhan 430074
Cite this article:   
WANG Zhi-Hao, LIU Wen, ZUO Qiang et al  2014 Chin. Phys. Lett. 31 088102
Download: PDF(1256KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The traditional lift-off process can hardly be carried out in ultraviolet nanoimprint defined patterns due to the poor solubility of the ultraviolet resist. Moreover, the depth of lift-off pattern defined by an ultraviolet nanoimprint is limited by that of the soft mold. In this work, a modified nanoimprint process by a multi-layer mask method is introduced to enhance the depth of the final lift-off pattern. Pillar photonic crystal is fabricated from the hole pattern defined by NIL to prove the pattern-reversal capability. On its basis, combining the features of overetching technology and the lateral diffusion phenomenon in the metal depositing process, pillar-shaped photonic crystal stamps with different duty cycles have been fabricated by adjusting the etching time of the lift-off layer. Based on this process, a 50-nm line width metal grating is fabricated from a soft stamp with an aspect ratio as low as 1.
PACS:  81.16.Nd (Micro- and nanolithography)  
  81.16.Rf (Micro- and nanoscale pattern formation)  
  81.65.Cf (Surface cleaning, etching, patterning)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/8/088102       OR      https://cpl.iphy.ac.cn/Y2014/V31/I08/088102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Zhi-Hao
LIU Wen
ZUO Qiang
WANG Lei
ZHAO Yan-Li
XU Zhi-Mou
[1] Chou S Y, Krauss P R and Renstrom P J 1995 Appl. Phys. Lett. 67 3114
[2] Austin M and Chou S Y 2002 J. Vac. Sci. Technol. B 20 665
[3] Li N H, Wu W and Chou S Y 2006 Nano Lett. 6 2626
[4] Haisma J, Verheijen M, V D Heuvel K and V D Berg J 1996 J. Vac. Sci. Technol. B 14 4124
[5] Bender M et al 2004 J. Vac. Sci. Technol. B 22 3229
[6] Chang J H et al 2005 J. Vac. Sci. Technol. A 23 1687
[7] Carlberg P et al 2003 Microelectron. Eng. 67 203
[8] Hwang S Y, Jung H Y, Jeong J H and Lee H 2009 Thin Solid Films 517 4104
[9] Lebib A et al 2000 Microelectron. Eng. 53 175
[10] Park H S et al 2007 IEEE Trans. Semiconductor Manufa Cturing 20 13
[11] Kim S H et al 2007 Nanotechnology 18 055306
[12] Matioli E and Weisbuch C 2010 J. Phys. D: Appl. Phys. 43 354005
[13] Shinagawa T et al 2010 Phys. Status-Solid 7 2165
[14] Ahn S W et al 2005 Nanotechnology 16 1874
[15] Wang Z H et al 2012 J. Micromech. Microeng. 22 125025
Related articles from Frontiers Journals
[1] Zheng Chen, Min Wu, Yequn Liu, Wenshuai Gao, Yuyan Han, Jianhui Zhou, Wei Ning, and Mingliang Tian. Non-Monotonic Evolution of Carrier Density and Mobility under Thermal Cycling Treatments in Dirac Semimetal Cd$_{3}$As$_{2}$ Microbelts[J]. Chin. Phys. Lett., 2021, 38(4): 088102
[2] Chufan Zhang, Ke Li, Xiaoxian Zang, Fuyuan Ma, and Yaping Dan. Towards Fabrication of Atomic Dopant Wires via Monolayer Doping Patterned by Resist-Free Lithography[J]. Chin. Phys. Lett., 2021, 38(2): 088102
[3] Peng Ren, Gang Han, Bing-Lei Fu, Bin Xue, Ning Zhang, Zhe Liu, Li-Xia Zhao, Jun-Xi Wang, Jin-Min Li. Selective Area Growth and Characterization of GaN Nanorods Fabricated by Adjusting the Hydrogen Flow Rate and Growth Temperature with Metal Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(06): 088102
[4] WANG Wen, SU Yu-Feng, LIU Chao-Ran, LI Dong-Xue, WANG Pan, DUAN Zhi-Yong. The Morphology of Patterning with Pseudoplastic Metal Nanoparticle Fluids during Heat Treatment[J]. Chin. Phys. Lett., 2015, 32(12): 088102
[5] ZHANG Zhi-Gang, DONG Feng-Liang, CHENG Teng, QIAN Ke-Mao, QIU Kang, ZHANG Qing-Chuan, CHU Wei-Guo, WU Xiao-Ping. Electron Beam Lithographic Pixelated Micropolarizer Array for Real-Time Phase Measurement[J]. Chin. Phys. Lett., 2014, 31(11): 088102
[6] ZHAO Jian-Yi, CHEN Xin, ZHOU Ning, HUANG Xiao-Dong, CAO Ming-De, LIU Wen. A 16-Channel Distributed-Feedback Laser Array with a Monolithic Integrated Arrayed Waveguide Grating Multiplexer for a Wavelength Division Multiplex-Passive Optical Network System Network[J]. Chin. Phys. Lett., 2014, 31(07): 088102
[7] ZHOU Pin-Jia, WANG Yi-Wen, WEI Lian-Fu. Anomalous Temperature Dependence of the Quality Factor in a Superconducting Coplanar Waveguide Resonator[J]. Chin. Phys. Lett., 2014, 31(06): 088102
[8] CHEN Xin, ZHAO Jian-Yi, ZHOU Ning, HUANG Xiao-Dong, LIU Wen. Four-Channel 1.55-μm DFB Laser Array Monolithically Integrated with a 4×1 Multimode-Interference Combiner Based on Nanoimprint Lithography[J]. Chin. Phys. Lett., 2014, 31(04): 088102
[9] ZHU Feng, MA Jian-Yong. Direct Laser Writing Facility for Fabrication of Submicron Mask[J]. Chin. Phys. Lett., 2014, 31(04): 088102
[10] ZUO Qiang, ZHAO Jian-Yi, CHEN Xin, WANG Zhi-Hao, SUN Tang-You, ZHOU Ning, ZHAO Yan-Li, XU Zhi-Mou, LIU Wen . A Multiple Phase-Shifted Distributed Feedback (DFB) Laser Fabricated by Nanoimprint Lithography[J]. Chin. Phys. Lett., 2013, 30(5): 088102
[11] TANG Min-Jin, XIE Hui-Min, LI Yan-Jie, LI Xiao-Jun, WU Dan. A New Grating Fabrication Technique on Metal Films Using UV-Nanoimprint Lithography[J]. Chin. Phys. Lett., 2012, 29(9): 088102
[12] LI Hao, WANG Rui, GENG Yong-You, WU Yi-Qun, WEI Jing-Song. Enhancement Effect of Patterning Resolution Induced by an Aluminum Thermal Conduction Layer with AgInSbTe as a Laser Thermal Lithography Film[J]. Chin. Phys. Lett., 2012, 29(7): 088102
[13] LI Yi-Gui**, YANG Chun-Sheng, LIU Jing-Quan, SUGIYAMA Susumu . Fabrication of a Polymer Micro Needle Array by Mask-Dragging X-Ray Lithography and Alignment X-Ray Lithography[J]. Chin. Phys. Lett., 2011, 28(3): 088102
[14] LIANG Hui-Min**, WANG Jing-Quan . Simulation of Interference Nanolithography of Second-Exciting Surface-Plasmon Polartions for Metal Nanograting Fabrication[J]. Chin. Phys. Lett., 2011, 28(1): 088102
[15] WANG Kai, LONG Hua, FU Ming, YANG Guang**, LU Pei-Xiang, **. Off-Resonant Third-Order Optical Nonlinearity of Au Nanoparticle Array by Femtosecond Z-scan Measurement[J]. Chin. Phys. Lett., 2010, 27(12): 088102
Viewed
Full text


Abstract