Chin. Phys. Lett.  2014, Vol. 31 Issue (08): 087401    DOI: 10.1088/0256-307X/31/8/087401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Thermodynamics of the CaLi2 Superconductor in the Vicinity of Structural Phase Transition
D. Szcześniak1**, R. Szcześniak2
1Institute of Physics, Jan Dlugosz University in Czestochowa, Al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland
2Institute of Physics, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Czestochowa, Poland
Cite this article:   
D. Szcz??niak, R. Szcz??niak 2014 Chin. Phys. Lett. 31 087401
Download: PDF(777KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Eliashberg formalism is used to investigate the thermodynamic properties of the high-pressure superconducting phase of the CaLi2 compound. In particular, our calculations are conducted in the vicinity of the C2/c →P21/c pressure-induced structural phase transition. We show that, in the considered case, the value of the Coulomb pseudopotential is high and equals 0.26. Moreover, we give the analysis of the thermodynamic parameters such as the superconducting transition temperature (TC), the energy gap at the Fermi level (2Δ(0)), the thermodynamic critical field (HC), and the specific heat of superconducting (CS) and normal (CN) states. We emphasize that the characteristic dimensionless ratios RΔ ≡2Δ(0)/kBTC, RH≡TCCN(TC)/HC2(0), and RC≡ΔC(TC)/CN(TC), have values that are beyond the predictions of the BCS theory in the case of the considered material. In particular, RΔ=3.85, RH=0.161, and RC=1.86. Furthermore, it is proved that the effective electron mass is high and equals 2.02me, where me denotes the bare electron mass.
PACS:  74.20.Fg (BCS theory and its development)  
  74.25.Bt (Thermodynamic properties)  
  74.62.Fj (Effects of pressure)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/8/087401       OR      https://cpl.iphy.ac.cn/Y2014/V31/I08/087401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
D. Szcz??niak
R. Szcz??niak
[1] Sakata M, Nakamoto Y, Shimizu K, Matsuoka T and Ohishi Y 2011 Phys. Rev. B 83 220512(R)
[2] Deemyad S and Schilling J S 2003 Phys. Rev. Lett. 91 167001
[3] Zhou D W, Pu C Y, Szcz??niak D, Zhang G F, Lu C, Li G Q and Song J F 2013 Chin. Phys. Lett. 30 027401
[4] Shi L and Papaconstantopoulos D A 2006 Phys. Rev. B 73 184516
[5] Szcz??niak R and Szcz??niak D 2012 Phys. Status Solidi B 249 2194
[6] Szcz??niak R, Jarosik M W and Szcz??niak D 2010 Physica B 405 4897
[7] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 106 162
[8] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[9] Matsuoka T, Debessai M, Hamlin J J, Gangopadhyay A K, Schilling J S and Shimizu K 2008 Phys. Rev. Lett. 100 197003
[10] Xie Y, Oganov A R and Ma Y 2010 Phys. Rev. Lett. 104 177005
[11] Cyrot M and Pavuna D 1992 Introduction to Superconductivity and High-TC Materials (Singapore: World Scientific)
[12] Eliashberg G M 1960 Sov. Phys. JETP 11 696
[13] Carbotte J P 1990 Rev. Mod. Phys. 62 1027
[14] Szcz??niak R, Durajski A P and Szcz??niak D 2013 Solid State Commun. 165 39
[15] Szcz??niak R, Szcz??niak D and Huras K M 2014 Phys. Status Solidi B 251 178
[16] Szcz??niak R and Durajski A P 2014 Supercond. Sci. Technol. 27 015003
Related articles from Frontiers Journals
[1] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 087401
[2] Jiang Hong Man, Ze Cheng. Cooper Molecules: Second Pairing of Cooper Pairs in Gapless Superconductor CeCoIn$_5$[J]. Chin. Phys. Lett., 2019, 36(10): 087401
[3] R. Szczęśniak, D. Szczęśniak. Energy Gap and Electron Effective Mass in Chlorine Halide Superconductor at High Pressure[J]. Chin. Phys. Lett., 2014, 31(11): 087401
[4] CAO Yu-Fei, CAI Kai-Ming, LI Li-Jun, LU Wen-Jian, SUN Yu-Ping, WANG Kai-You. Transport and Capacitance Properties of Charge Density Wave in Few-Layer 2H–TaS2 Devices[J]. Chin. Phys. Lett., 2014, 31(07): 087401
[5] HAN Qiang, LIU Jia, ZHANG Dan-Bo, WANG Zi-Dan. An Exotic Type of Fulde–Ferrel–Larkin–Ovchinnikov States in Spin-Orbit Coupled Condensates[J]. Chin. Phys. Lett., 2014, 31(05): 087401
[6] FAN Wei, WANG Jiang-Long, ZOU Liang-Jian, ZENG Zhi. Non-Adiabatic Effects of Superconductor Silane under High Pressure[J]. Chin. Phys. Lett., 2010, 27(8): 087401
[7] FAN Wei. Anti-Correlation between Energy-Gap and Phonon Energy for Cuprate Bi2212 Superconductor[J]. Chin. Phys. Lett., 2008, 25(6): 087401
[8] LIU Su, SHEN Rui, ZHENG Zhi-Ming, XING Ding-Yu. Incompatibility of d-Wave Pairing and Ferromagnetism in a Uniform System[J]. Chin. Phys. Lett., 2003, 20(2): 087401
[9] YIN Dao-Le, YANG Fan, QI Zhi, HAN Ru-Shan. Electron-Phonon Coupling in Anion Metallic Solids and Superconducting MgB2[J]. Chin. Phys. Lett., 2002, 19(8): 087401
[10] CHEN Zhi-Qian, ZHENG Ren-Rong,. Statistic Ensemble Theory of Small Superconducting Grains[J]. Chin. Phys. Lett., 2001, 18(4): 087401
[11] CHEN Zhi-Qian, ZHENG Ren-Rong,. Breakdown of Superconductivity in Small Metallic Grains[J]. Chin. Phys. Lett., 2000, 17(10): 087401
[12] CHEN Xiao-jia, GONG Chang-de. Pressure-Induced Charge Transfer and Pressure Dependence of the Superconducting Transition Temperature in HgBa2CuO4+δ[J]. Chin. Phys. Lett., 1998, 15(9): 087401
[13] SHI Da-ning. Van Hove Scenario in Two-Layer BCS Model[J]. Chin. Phys. Lett., 1996, 13(1): 087401
[14] LIU Fusui. HIGH Tc SUPERCONDUCTIVITY ENHANCED BY ANTIFERROMAGNETISM[J]. Chin. Phys. Lett., 1989, 6(10): 087401
Viewed
Full text


Abstract