Chin. Phys. Lett.  2014, Vol. 31 Issue (08): 087302    DOI: 10.1088/0256-307X/31/8/087302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Fano-Like Resonance in Cylinders Including Nonlocal Effects
LI Liang-Sheng**, YIN Hong-Cheng
Science and Technology on Electromagnetic Scattering Laboratory, Beijing 100854
Cite this article:   
LI Liang-Sheng, YIN Hong-Cheng 2014 Chin. Phys. Lett. 31 087302
Download: PDF(871KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the optical response of a metallic wire calculated from the classical electromagnetic theory. The Drude (local) approach is compared with the semi-classical hydrodynamical theory calculations that reveal the Fano-like resonances of subsidiary peaks originated from the nonlocality. The bulk plasma resonances containing the nonlocal effects could be depressed by increasing the dissipation, while the blue shift of the surface localized plasma resonances could be enhanced by increasing the Fermi velocity.
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  78.68.+m (Optical properties of surfaces)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/8/087302       OR      https://cpl.iphy.ac.cn/Y2014/V31/I08/087302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Liang-Sheng
YIN Hong-Cheng
[1] Pendry J B, Aubry A, Smith D R and Maier S A 2012 Science 337 549
[2] Luk'yanchuk B S et al 2010 Nat. Mater. 9 707
[3] James L H and Jeon T I 2012 J. Infrared Milli. Terahz Waves 33 871
[4] Fernandez-Dominguez A I, Wiener A, Garcia-Vidal F J, Maier S A and Pendry J B 2012 Phys. Rev. Lett. 108 106802
[5] Fu Y H, Kuznetsov A I, Miroshnichenko A E, Yu Y F and Luk'yanchuk B 2013 Nat. Commun. 4 1527
[6] Marinica D C, Kazansky A K, Nordlander P, Aizpurua J and Borisov A G 2012 Nano Lett. 12 1333
[7] Teperik T V, Nordlander P, Aizpurua J and Borisov A G 2013 Phys. Rev. Lett. 110 263901
[8] Halas N J, Lal S, Chang W S, Link S and Nordlander P 2011 Chem. Rev. 111 3913
[9] Mitsuhiro T et al 2012 Prog. Quantum Electron. 36 194
[10] Luk'yanchuk B, Miroshnichenko A E and Kivshar Y S 2013 J. Opt. 15 073001
[11] Tribelsky M I, Miroshnichenko A E and Kivshar Y S 2012 Europhys. Lett. 97 44005
[12] Ciraci C et al 2012 Science 337 1072
[13] Luo Y, Fernandez-Dominguez A I, Wiener A, Maier S A and Pendry J B 2013 Phys. Rev. Lett. 111 093901
[14] Boardman A D 1982 Electromagnetic Surface Modes (New York: Wiley Interscience)
[15] Ruppin R 1992 Phys. Rev. B 45 11209
[16] Zhang M, Li L S, Zheng N and Shi Q F 2013 Chin. Phys. Lett. 30 077802
[17] Miroshnichenko A E, Flach S and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
[18] Huang W X 2013 Chin. Phys. Lett. 30 077308
Related articles from Frontiers Journals
[1] Qirui Cui, Jinghua Liang, Yingmei Zhu, Xiong Yao, and Hongxin Yang. Quantum Anomalous Hall Effects Controlled by Chiral Domain Walls[J]. Chin. Phys. Lett., 2023, 40(3): 087302
[2] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 087302
[3] Lili Zhao, Wenlu Lin, Y. J. Chung, K. W. Baldwin, L. N. Pfeiffer, and Yang Liu. Finite Capacitive Response at the Quantum Hall Plateau[J]. Chin. Phys. Lett., 2022, 39(9): 087302
[4] Yuan-Fang Yu, Ye Zhang, Fan Zhong, Lin Bai, Hui Liu, Jun-Peng Lu, and Zhen-Hua Ni. Highly Sensitive Mid-Infrared Photodetector Enabled by Plasmonic Hot Carriers in the First Atmospheric Window[J]. Chin. Phys. Lett., 2022, 39(5): 087302
[5] Gongzheng Chen, Jin Lan, Tai Min, and Jiang Xiao. Narrow Waveguide Based on Ferroelectric Domain Wall[J]. Chin. Phys. Lett., 2021, 38(8): 087302
[6] Yun-Fei Zou and Li Yu. Lower Exciton Number Strong Light Matter Interaction in Plasmonic Tweezers[J]. Chin. Phys. Lett., 2021, 38(2): 087302
[7] Jiancai Xue , Limin Lin , Zhang-Kai Zhou, and Xue-Hua Wang . Semi-Ellipsoid Nanoarray for Angle-Independent Plasmonic Color Printing[J]. Chin. Phys. Lett., 2020, 37(11): 087302
[8] Ping Jiang, Chao Li, Yuan-Yuan Chen, Gang Song, Yi-Lin Wang, Li Yu. Strong Exciton-Plasmon Coupling and Hybridization of Organic-Inorganic Exciton-Polaritons in Plasmonic Nanocavity[J]. Chin. Phys. Lett., 2019, 36(10): 087302
[9] Binbin Liu, Pujuan Ma, Wenjing Yu, Yadong Xu, Lei Gao. Tunable Bistability in the Goos–H?nchen Effect with Nonlinear Graphene[J]. Chin. Phys. Lett., 2019, 36(6): 087302
[10] Peng Sun, Wei-Wei Yu, Xiao-Hang Pan, Wei Wei, Yan Sun, Ning-Yi Yuan, Jian-Ning Ding, Wen-Chao Zhao, Xin Chen, Ning Dai. Fluorescence Enhancement of Metal-Capped Perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2017, 34(9): 087302
[11] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Erratum: Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance [Chin. Phys. Lett. 34(2017)057501][J]. Chin. Phys. Lett., 2017, 34(8): 087302
[12] A. R. Sadrolhosseini, M. Naseri, M. K. Halimah. Polypyrrole Chitosan Cobalt Ferrite Nanoparticles Composite Layer for Measuring the Low Concentration of Fluorene Using Surface Plasmon Resonance[J]. Chin. Phys. Lett., 2017, 34(5): 087302
[13] Xin Sun. Generalized Hellmann–Feynman Theorem and Its Applications[J]. Chin. Phys. Lett., 2016, 33(12): 087302
[14] Chuan-Pu Liu, Xin-Li Zhu, Jia-Sen Zhang, Jun Xu, Yamin Leprince-Wang, Da-Peng Yu. Energy Levels of Coupled Plasmonic Cavities[J]. Chin. Phys. Lett., 2016, 33(08): 087302
[15] Xiao-Kun Zhao, Yuan Yao, Pei-Lin Lang, Hong-Lian Guo, Xi Shen, Yan-Guo Wang, Ri-Cheng Yu. Absorption Range and Energy Shift of Surface Plasmon in Au Monomer and Dimer[J]. Chin. Phys. Lett., 2016, 33(02): 087302
Viewed
Full text


Abstract