Chin. Phys. Lett.  2014, Vol. 31 Issue (08): 087102    DOI: 10.1088/0256-307X/31/8/087102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Pairing Symmetry of Heavy Fermion Superconductivity in the Two-Dimensional Kondo–Heisenberg Lattice Model
LIU Yu1, ZHANG Guang-Ming2,3**, YU Lu1,3
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084
3Collaborative Innovation Center of Quantum Matter, Beijing 100084
Cite this article:   
LIU Yu, ZHANG Guang-Ming, YU Lu 2014 Chin. Phys. Lett. 31 087102
Download: PDF(764KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In the two-dimensional Kondo–Heisenberg lattice model away from half-filled, the local antiferromagnetic exchange coupling can provide the pairing mechanism of quasiparticles via the Kondo screening effect, leading to the heavy fermion superconductivity. We find that the pairing symmetry strongly depends on the Fermi surface (FS) structure in the normal metallic state. When JH/JK is very small, the FS is a small hole-like circle around the corner of the Brillouin zone, and the s-wave pairing symmetry has a lower ground state energy. For the intermediate coupling values of JH/JK, the extended s-wave pairing symmetry gives the favored ground state. However, when JH/JK is larger than a critical value, the FS transforms into four small hole pockets crossing the boundary of the magnetic Brillouin zone, and the d-wave pairing symmetry becomes more favorable. In that regime, the resulting superconducting state is characterized by either a nodal d-wave or nodeless d-wave state, depending on the conduction electron filling factor as well. A continuous phase transition exists between these two states. This result may be related to the phase transition of the nodal d-wave state to a fully gapped state, which has recently been observed in Yb-doped CeCoIn5.
PACS:  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  74.70.Tx (Heavy-fermion superconductors)  
  75.30.Mb (Valence fluctuation, Kondo lattice, and heavy-fermion phenomena)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/8/087102       OR      https://cpl.iphy.ac.cn/Y2014/V31/I08/087102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Yu
ZHANG Guang-Ming
YU Lu
[1] Stewart G 2001 Rev. Mod. Phys. 73 797
[2] Lohneysen H V, Rosch A, Vojta M and W?lfle P 2007 Rev. Mod. Phys. 79 1015
[3] Si Q, Rabello S, Ingersent K and Smith J 2001 Nature 413 804
[4] Watanabe H and Ogata M 2007 Phys. Rev. Lett. 99 136401
[5] Martin L C and Assaad F F 2008 Phys. Rev. Lett. 101 066404
[6] Doniach S 1977 Physica B&C 91 231
[7] Lacroix C and Cyrot M 1979 Phys. Rev. B 20 1969
[8] Zhang G M, Gu Q and Yu L 2000 Phys. Rev. B 62 69
[9] Stockert O et al 2011 Nat. Phys. 7 119
[10] Izawa K, Yamaguchi H, Matsuda Y, Shishido H, Settai R and Onuki Y 2001 Phys. Rev. Lett. 87 057002
[11] Aoki H et al 2004 J. Phys.: Condens. Matter 16 L13
[12] Allan M P et al 2013 Nat. Phys. 9 468
[13] Zhou B B et al 2013 Nat. Phys. 9 682
[14] Matsuda K, Kohor Y and Kohara T 1995 J. Phys. Soc. Jpn. 64 2750
[15] Ishida K et al 1997 Physica B 237 304
[16] Kiss T et al 2005 Phys. Rev. Lett. 94 057001
[17] Read N and Newns D M 1983 J. Phys. C: Solid State Phys. 16 3273
[18] Auerbach A and Levin K 1986 Phys. Rev. Lett. 57 877
[19] Millis A J and Lee P A 1987 Phys. Rev. B 35 3394
[20] Coleman P and Andrei N 1989 J. Phys.: Condens. Matter 1 4057
[21] Iglesias J R, Lacroix C and Coqblin B 1997 Phys. Rev. B 56 11820
[22] Senthil T, Vojta M and Sachdev S 2004 Phys. Rev. B 69 035111
[23] Coleman P, Marston J B and Schofield A J 2005 Phys. Rev. B 72 245111
[24] Paul I, Pepin C and Norman M R 2007 Phys. Rev. Lett. 98 026402
[25] Grover T and Senthil T 2010 Phys. Rev. B 81 205102
[26] Zhang G M, Su Y H and Yu L 2011 Phys. Rev. B 83 033102
[27] Sato N K et al 2001 Nature 410 340
[28] Xavier J C and Dagotto E 2008 Phys. Rev. Lett. 100 146403
[29] Asadzadeh M Z, Fabrizio M and Becca F 2014 arXiv:1403.2631v1[cond-mat]
[30] Bodensiek O, Zitko R, Vojita M, Jarrell M and Pruschke T 2013 Phys. Rev. Lett. 110 146406
[31] Kim H et al 2014 arXiv:1404.3700v1[cond-mat]
[32] Flint R, Dzero M and Coleman P 2008 Nat. Phys. 4 643
[33] Kotliar G and Liu J 1988 Phys. Rev. B 38 5142
[34] Shu L et al 2011 Phys. Rev. Lett. 106 156403
[35] Singh Y P et al 2014 Phys. Rev. B 89 115106
Related articles from Frontiers Journals
[1] Miao Xu, Changwei Zou, Benchao Gong, Ke Jia, Shusen Ye, Zhenqi Hao, Kai Liu, Youguo Shi, Zhong-Yi Lu, Peng Cai, and Yayu Wang. Tuning the Mottness in Sr$_{3}$Ir$_{2}$O$_{7}$ via Bridging Oxygen Vacancies[J]. Chin. Phys. Lett., 2023, 40(3): 087102
[2] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 087102
[3] Kun Jiang. Correlation Renormalized and Induced Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2023, 40(1): 087102
[4] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 087102
[5] Neng Xie, Danqing Hu, Shu Chen, and Yi-feng Yang. Evolution of Topological End States in the One-Dimensional Kondo–Heisenberg Model with Site Modulation[J]. Chin. Phys. Lett., 2022, 39(11): 087102
[6] Xingyu Wang, Dongliang Gong, Bo Liu, Xiaoyan Ma, Jinyu Zhao, Pengyu Wang, Yutao Sheng, Jing Guo, Liling Sun, Wen Zhang, Xinchun Lai, Shiyong Tan, Yi-feng Yang, and Shiliang Li. In-Plane Anisotropic Response to Uniaxial Pressure in the Hidden Order State of URu$_2$Si$_2$[J]. Chin. Phys. Lett., 2022, 39(10): 087102
[7] Y. E. Huang, F. Wu, A. Wang, Y. Chen, L. Jiao, M. Smidman, and H. Q. Yuan. Pressure Evolution of the Magnetism and Fermi Surface of YbPtBi Probed by a Tunnel Diode Oscillator Based Method[J]. Chin. Phys. Lett., 2022, 39(9): 087102
[8] Yunchao Hao, Gaopei Pan, Kai Sun, Zi Yang Meng, and Yang Qi. Superconductivity near the (2+1)-Dimensional Ferromagnetic Quantum Critical Point[J]. Chin. Phys. Lett., 2022, 39(9): 087102
[9] Jian-Keng Yuan, Shuai A. Chen, and Peng Ye. Quantum Hydrodynamics of Fractonic Superfluids with Lineon Condensate: From Navier–Stokes-Like Equations to Landau-Like Criterion[J]. Chin. Phys. Lett., 2022, 39(5): 087102
[10] Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Ya-Dong Gu, Ming-Wei Ma, Gen-Fu Chen, and Zhi-An Ren. Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O[J]. Chin. Phys. Lett., 2022, 39(2): 087102
[11] Haiwei Li, Shusen Ye, Jianfa Zhao, Changqing Jin, and Yayu Wang. Temperature Dependence of the Electronic Structure of Ca$_{3}$Cu$_{2}$O$_{4}$Cl$_{2}$ Mott Insulator[J]. Chin. Phys. Lett., 2022, 39(1): 087102
[12] Qiangwei Yin, Zhijun Tu, Chunsheng Gong, Shangjie Tian, and Hechang Lei. Structures and Physical Properties of V-Based Kagome Metals CsV$_{6}$Sb$_{6}$ and CsV$_{8}$Sb$_{12}$[J]. Chin. Phys. Lett., 2021, 38(12): 087102
[13] Yunqing Ouyang, Qing-Rui Wang, Zheng-Cheng Gu, and Yang Qi. Computing Classification of Interacting Fermionic Symmetry-Protected Topological Phases Using Topological Invariants[J]. Chin. Phys. Lett., 2021, 38(12): 087102
[14] Chuang Xie, Ling Hu, Ran-Ran Zhang, Shun-Jin Zhu, Min Zhu, Ren-Huai Wei, Xian-Wu Tang, Wen-Hai Song, Xue-Bin Zhu, and Yu-Ping Sun. Concurrent Structural and Electronic Phase Transitions in V$_2$O$_3$ Thin Films with Sharp Resistivity Change[J]. Chin. Phys. Lett., 2021, 38(7): 087102
[15] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 087102
Viewed
Full text


Abstract