Chin. Phys. Lett.  2014, Vol. 31 Issue (08): 087101    DOI: 10.1088/0256-307X/31/8/087101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Comparative Studies of Rare-Earth Element Y-Doped In2O3 by First-Principles Calculations
BAI Li-Na1,2, FENG Li-Feng2, WANG Rui1, JIANG Qing1, LIAN Jian-She1**
1The Key Lab of Automobile Materials (Ministry of Education), College of Materials Science and Engineering, Jilin University, Changchun 130025
2The Key Laboratory of Photonic and Electric Bandgap Materials (Ministry of Education), School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025
Cite this article:   
BAI Li-Na, FENG Li-Feng, WANG Rui et al  2014 Chin. Phys. Lett. 31 087101
Download: PDF(793KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In2O3 doped with rare-earth element yttrium shows improved optoelectronic efficiency. Here the structural properties and electronic structures of Y-doped In2O3 are investigated by using a first-principles approximation. For In1.9375Y0.0625O3, the d site is the more stable site. The Yi3+ interstitial has a low formation energy and is a possible interstitial defect, which would lead to shallow and abundant donors without sacrificing optical transparency. Since defects are universally distributed in In2O3 or doped In2O3, complex defect configurations are also calculated.
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.20.Nr (Semiconductor compounds)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/8/087101       OR      https://cpl.iphy.ac.cn/Y2014/V31/I08/087101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
BAI Li-Na
FENG Li-Feng
WANG Rui
JIANG Qing
LIAN Jian-She
[1] Tomita T, Yamashita K, Hayafuji Y and Adachi H 2005 Appl. Phys. Lett. 87 051911
[2] Zhang J, Qing X, Jiang F H and Dai Z H 2003 Chem. Phys. Lett. 371 311
[3] Meng Y, Yang X L, Chen H X, Shen J, Jiang Y M, Zhang Z J and Hua Z Y 2001 Thin Solid Films 394 218
[4] Warmsingh C, Yoshida Y, Readey D W, Teplin C W, Perkins J D, Parilla P A, Gedvilas L M, Keyes B M and Ginley D S 2004 J. Appl. Phys. 95 3831
[5] Medvedeva J E 2006 Phys. Rev. Lett. 97 086401
[6] Arai N, Saito N, Nishiyama H, Shimodaira Y, Kobayashi H, Inoue Y and Sato K 2008 J. Phys. Chem. C 112 5000
[7] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[8] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[9] Van de Walle C G, Limpijumnong S and Neugebauer J?rg 2001 Phys. Rev. B 63 245205
[10] Limpijumnong S, Zhang S B, Wei S H and Park C H 2004 Phys. Rev. Lett. 92 155504
[11] Kih? ? and Zunger A 2002 Phys. Rev. Lett. 88 095501
[12] Reunchan P, Zhou X, Limpijumnong S, Janotti A and Van de Walle C G 2011 Curr. Appl. Phys. 11 S296
[13] Zheng J X, Ceder G, Maxisch T, Chim W K and Choi W K 2006 Phys. Rev. B 73 104101
[14] Bai L N, Wei Y P, Lian J S and Jiang Q 2013 J. Phys. Chem. Solids 74 446
[15] Skoulidis N and Polatoglou H M 2007 Thin Solid Films 515 8728
[16] Brewer S H and Franzen S 2004 Chem. Phys. 300 285
[17] Kompany A, Aliabad H A R, Hosseini S M and Baedi J 2007 Phys. Status Solidi B 244 619
[18] Wei H L, Zhang L, Liu Z L and Yao K L 2011 Chin. Phys. B 20 118102
[19] Sun S H, Wu P and Xing P F 2013 Chin. Phys. Lett. 30 077503
[20] ?ztaş M, Bedir M, ?ztürk Z, Korkmaz D and Sur S 2006 Chin. Phys. Lett. 23 1610
[21] Sato J, Kobayashi H and Inoue Y 2003 J. Phys. Chem. B 107 7970
[22] Inoue Y, Asai Y and Sato K 1994 J. Chem. Soc.-Faraday Trans. 90 797
[23] Kohno M, Ogura S, Sato K and Inoue Y 1997 Chem. Phys. Lett. 267 72
[24] Inoue Y, Kubokawa T and Sato K 1991 J. Phys. Chem. 95 4059
[25] Ogura S, Kohno M, Sato K and Inoue Y 1999 Phys. Chem. Chem. Phys. 1 179
[26] Walsh A, Da Silva J L F, Wei S H, K?rber C, Klein A, Piper L F J, DeMasi A, Smith K E, Panaccione G, Torelli P, Payne D J, Bourlange A and Egdell R G 2008 Phys. Rev. Lett. 100 167402
[27] Bai L N, Sun H M, Lian J S and Jiang Q 2012 Chin. Phys. Lett. 29 117101
[28] King P D C, Veal T D, Fuchs F, Wang Y, Payne D J, Bourlange A, Zhang H, Bell G R, Cimalla V, Ambacher O, Egdell R G, Bechstedt F and McConville C F 2009 Phys. Rev. B 79 205211
[29] Hamberg I and Granqvist C G 1986 J. Appl. Phys. 60 R123
[30] Weiher R L and Ley R P 1966 J. Appl. Phys. 37 299
[31] Burbano M, Scanlon D O and Watson G W 2011 J. Am. Chem. Soc. 133 15065
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 087101
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 087101
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 087101
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 087101
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 087101
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 087101
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 087101
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 087101
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 087101
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 087101
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 087101
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 087101
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 087101
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 087101
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 087101
Viewed
Full text


Abstract