Chin. Phys. Lett.  2014, Vol. 31 Issue (08): 086501    DOI: 10.1088/0256-307X/31/8/086501
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Thermal Conduction in a Single Polyethylene Chain Using Molecular Dynamics Simulations
HU Guo-Jie, CAO Bing-Yang**, LI Yuan-Wei
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084
Cite this article:   
HU Guo-Jie, CAO Bing-Yang, LI Yuan-Wei 2014 Chin. Phys. Lett. 31 086501
Download: PDF(546KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Research on the thermal conduction in a single polymer chain is significant for the improvement of the thermal property of bulk polymer materials. We calculate the thermal conductivity of a single polyethylene (PE) chain by using both the Green–Kubo approach and a nonequilibrium molecular dynamics simulation method. The results suggest that the thermal conductivity of an individual polymer chain is very high although bulk PE is a thermal insulator, even divergent in our case. Moreover, the thermal conductivity of PE chains is observed to increase with the chain length.
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  66.30.hk (Polymers)  
  61.41.+e (Polymers, elastomers, and plastics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/8/086501       OR      https://cpl.iphy.ac.cn/Y2014/V31/I08/086501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU Guo-Jie
CAO Bing-Yang
LI Yuan-Wei
[1] Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K and Yang Y 2005 Nat. Mater. 4 864
[2] Nie Z and Kumacheva E 2008 Nat. Mater. 7 277
[3] Liu C 2007 Adv. Mater. 19 3783
[4] Ryan A J 2008 Nature 456 334
[5] Bruening M and Dotzauer D 2009 Nat. Mater. 8 449
[6] Charnley M, Textor M and Acikgoz C 2011 React. Funct. Polym. 71 329
[7] Varshney V, Patnaik S S, Roy A K and Farmer B L 2009 Polymer 50 3378
[8] Zhao L, Crombez R, Caballero F P, Antonietti M, Texter J and Titirici M M 2010 Polymer 51 4540
[9] Clancy T C and Gates T S 2006 Polymer 47 5990
[10] Padgett C W and Brenner C W 2004 Nano Lett. 4 1051
[11] Cao B Y and Hou Q W 2008 Chin. Phys. Lett. 25 1392
[12] Henry A and Chen G 2008 Phys. Rev. Lett. 101 235502
[13] Henry A and Chen G 2009 Phys. Rev. B 79 144305
[14] Jiang J W, Zhao J, Zhou K and Rabczuk T 2012 J. Appl. Phys. 111 124304
[15] Shen S, Henry A, Tong J, Zheng R T and Chen G 2010 Nat. Nanotechnol. 5 251
[16] Cao B Y, Li Y W, Kong J, Chen H, Xu Y, Yung K L and Cai A 2011 Polymer 52 1711
[17] Cao B Y, Kong J, Xu Y, Yung K L and Cai A 2013 Heat Transfer Eng. 34 131
[18] Cao B Y, Dong R Y, Kong J, Chen H, Xu Y, Yung K L and Cai A 2012 Acta Phys. Sin. 61 046501 (in Chinese)
[19] Kirkwood J G 1939 J. Chem. Phys. 7 506
[20] Freeman J J, Morgan G J and Cullen C A 1987 Phys. Rev. B 35 7627
[21] Hansen J and McDonald I 1986 Theory of Simple Liquids (London: Academic)
[22] Volz S and Chen G 2000 Phys. Rev. B 61 2651
[23] Muller F 1997 J. Chem. Phys. 106 6082
[24] Nose S 1984 Mol. Phys. 52 255
[25] Hoover W G 1985 Phys. Rev. A 31 1695
[26] Ni B, Watanabe T and Phillpot S R 2009 J. Phys.: Condens. Matter 21 084219
Related articles from Frontiers Journals
[1] Gui-ping Zhu , Chang-wei Zhao , Xi-wen Wang , and Jian Wang. Tuning Thermal Conductivity in Si Nanowires with Patterned Structures[J]. Chin. Phys. Lett., 2021, 38(2): 086501
[2] Vali Dalouji, Dariush Mehrparvar, Shahram Solaymani, Sahar Rezaee. Effect of Nickel Distributions Embedded in Amorphous Carbon Films on Transport Properties[J]. Chin. Phys. Lett., 2018, 35(2): 086501
[3] Deyan Sun, Cheng Shang, Zhipan Liu, Xingao Gong. Intrinsic Features of an Ideal Glass[J]. Chin. Phys. Lett., 2017, 34(2): 086501
[4] LU Xing, ZHONG Wei-Rong. Low Thermal Conductivity of Paperclip-Shaped Graphene Superlattice Nanoribbons[J]. Chin. Phys. Lett., 2015, 32(09): 086501
[5] WEI Liang, XU Zhi-Cheng, ZHENG Dong-Qin, ZHANG Wei, ZHONG Wei-Rong. Heat Transport in Double-Bond Linear Chains of Fullerenes[J]. Chin. Phys. Lett., 2015, 32(07): 086501
[6] CHEN Xiao-Ming, HUO Kai-Tuo, LIU Peng. In Situ X-Ray Diffraction Study on Surface Melting of Bi Nanoparticles Embedded in a SiO2 Matrix[J]. Chin. Phys. Lett., 2014, 31(1): 086501
[7] PAN Rui-Qin, XU Zi-Jian, DAI Cui-Xia. Thermal Conductivity of the Partly Covered Inner Tube in a Double-Walled Carbon Nanotube with Varied Coverage Ratios[J]. Chin. Phys. Lett., 2014, 31(1): 086501
[8] PENG Chun, ZHANG Hong, CHENG Xin-Lu. Path Integral Monte Carlo Study of X@C50 [X=H2, He, Ne, Ar][J]. Chin. Phys. Lett., 2013, 30(11): 086501
[9] LÜ, Yong-Jun**. Enhanced Surface Premelting of Ni90Si10 Nanoparticles[J]. Chin. Phys. Lett., 2012, 29(4): 086501
[10] ZHOU Guo-Rui, FENG Guo-Ying, ZHANG Yi, MA Zi, WANG Jian-Jun. A Temperature Sensor Based on a Symmetrical Metal-Cladding Optical Waveguide[J]. Chin. Phys. Lett., 2012, 29(2): 086501
[11] WANG Sheng-Jie, ZHANG Chun-Lai, WANG Zhi-Guo. Melting of Single-Walled Silicon Carbide Nanotubes: Density Functional Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2010, 27(10): 086501
Viewed
Full text


Abstract