Chin. Phys. Lett.  2014, Vol. 31 Issue (08): 086201    DOI: 10.1088/0256-307X/31/8/086201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Mechanical Properties of Sialic Foamed Ceramic and Applications in Defense Structure
LI Xu-Yang1, LI Yong-Chi1**, ZHAO Kai1, GAO Guang-Fa2
1Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027
2Faculty of Engineering, National University of Singapore, Singapore 120425, Singapore
Cite this article:   
LI Xu-Yang, LI Yong-Chi, ZHAO Kai et al  2014 Chin. Phys. Lett. 31 086201
Download: PDF(1382KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Mechanical properties of a closed-cellular sialic foamed ceramic are investigated by compressive tests. The sialic foamed ceramic under uniaxial stress compression shows brittleness and the flow stress increases with the strain rate. The engineering stress-engineering strain curve under uniaxial strain compression could be divided into three stages: linear elasticity, collapsed plateau and densification. The unloading elastic modulus, Poisson ratio and energy absorption ability are discussed. Shelly cellular material made by sialic foamed ceramic is applied into the stress distribution layer in the defense structure. Field explosion experiments are performed for the sand based stress distribution layer and shelly cellular material based layer. Compared with sand, the shelly cellular material reduces the peak stress of the blast wave.
PACS:  62.20.-x (Mechanical properties of solids)  
  81.70.-q (Methods of materials testing and analysis)  
  83.60.-a (Material behavior)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/8/086201       OR      https://cpl.iphy.ac.cn/Y2014/V31/I08/086201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Xu-Yang
LI Yong-Chi
ZHAO Kai
GAO Guang-Fa
[1] Yamada Y et al 2000 Mater. Sci. Eng. A 277 213
[2] Brezny R and Green D J 1993 J. Am. Ceram. Soc. 76 2185
[3] Dam C Q, Brezny R and Green D J 1990 J. Mater. Res. 5 163
[4] Celzard A et al 2010 Mater. Sci. Eng. A 527 4438
[5] Keleş ?, García R E and Bowman K J 2013 Acta Mater. 61 2853
[6] Hayun S et al 2008 Mater. Sci. Eng. A 487 405
[7] A S Ezeldin and P N Balaguru 1992 J. Mater. Civ. Eng. 4 415
[8] Miltz J and Gruenbaum G 1981 Polym. Eng. Sci. 21 1010
[9] Wang Z et al 2007 Eng. Struct. 29 1025
[10] Yang Z 1997 Anal. Des. 24 113
[11] Wang Z et al 2006 Comput. Geotech. 33 132
[12] Wang Z, Li Y and Wang J G 2006 Comput. Geosci. 32 1535
Related articles from Frontiers Journals
[1] Chang Liu, Xianqi Song, Quan Li, Yanming Ma, and Changfeng Chen. Superconductivity in Shear Strained Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 086201
[2] Zhongmin Ren, Muqin Wang, Shuaishuai Chen, Lei Ding, Hua Li, Jian Liu, Jieyun Zheng, Zhihong Liu, Deyu Wang, and Mingkui Wang. Improvement of Cyclic Stability of Na$_{0.67}$Mn$_{0.8}$Ni$_{0.1}$Co$_{0.1}$O$_{2}$ via Suppressing Lattice Variation[J]. Chin. Phys. Lett., 2021, 38(7): 086201
[3] Zhenjiang Han, Han Liu, Quan Li, Dan Zhou, and Jian Lv. Superior Mechanical Properties of GaAs Driven by Lattice Nanotwinning[J]. Chin. Phys. Lett., 2021, 38(4): 086201
[4] Xue-Hua Zhang, Rong Li, Yong-Qing Zhao, and Wei-Dong Zeng. Shear-Banding Evolution Dynamics during High Temperature Compression of Martensitic Ti-6Al-4V Alloy[J]. Chin. Phys. Lett., 2020, 37(11): 086201
[5] Lei Guo, Gang Tang, Jiawang Hong. Mechanical Properties of Formamidinium Halide Perovskites FABX$_{3}$ (FA=CH(NH$_{2})_{2}$; B=Pb, Sn; X=Br, I) by First-Principles Calculations[J]. Chin. Phys. Lett., 2019, 36(5): 086201
[6] Nian-Rui Qu, Hong-chao Wang, Qing Li, Zhi-Ping Li, Fa-Ming Gao. An Orthorhombic Phase of Superhard $o$-BC$_{4}$N[J]. Chin. Phys. Lett., 2019, 36(3): 086201
[7] Zhi-Dong Han, Heng-Wei Luan, Shao-Fan Zhao, Na Chen, Rui-Xuan Peng, Yang Shao, Ke-Fu Yao. Microstructures and Mechanical Properties of AlCrFeNiMo$_{0.5}$Ti$_{x}$ High Entropy Alloys[J]. Chin. Phys. Lett., 2018, 35(3): 086201
[8] Yi Tian, Hong Wang, Chang-Sheng Zhang, Qiang Tian, Wei-Bin Zhang, Hong-Jia Li, Jian Li, Ben-De Liu, Guang-Ai Sun, Tai-Ping Peng, Yao Xu, Jian Gong. Compressive Behavior of TATB Grains inside TATB-Based PBX Revealed by In-Situ Neutron Diffraction[J]. Chin. Phys. Lett., 2017, 34(6): 086201
[9] Yu-Jie Hu, Sheng-Liang Xu, Hao Wang, Heng Liu, Xue-Chun Xu, Ying-Xiang Cai. Superhard BC$_2$N: an Orthogonal Crystal Obtained by Transversely Compressing (3,0)-CNTs and (3,0)-BNNTs[J]. Chin. Phys. Lett., 2016, 33(10): 086201
[10] Chun-Lei Fan, Bo-Han Ma, Da-Nian Chen, Huan-Ran Wang, Dong-Fang Ma. Spall Strength of Resistance Spot Weld for QP Steel[J]. Chin. Phys. Lett., 2016, 33(03): 086201
[11] GUO Wen-Feng, WANG Ling-Sheng, LI Zhi-Ping, XIA Mei-Rong, GAO Fa-Ming. Urtra-Hard Bonds in P-Carbon Stronger than Diamond[J]. Chin. Phys. Lett., 2015, 32(09): 086201
[12] ZHUO Long-Chao, LIANG Shu-Hua, ZHANG Tao. The 1.85 GPa AlSc Bulk Alloy with Abundant Nanoscale Growth Twins[J]. Chin. Phys. Lett., 2015, 32(07): 086201
[13] LIU Jian-Sheng, WANG Li-Jun, HE Shi-Tang. On the Fundamental Mode Love Wave in Devices Incorporating Thick Viscoelastic Layers[J]. Chin. Phys. Lett., 2015, 32(06): 086201
[14] FU Yuan-Yuan, LI Yin-Wei, HUANG Hong-Mei. Elastic and Dynamical Properties of YB4: First-Principles Study[J]. Chin. Phys. Lett., 2014, 31(11): 086201
[15] MAO Xu, LV Xing-Dong, WEI Wei-Wei, ZHANG Zhe, YANG Jin-Ling, QI Zhi-Mei, YANG Fu-Hua. A Wafer-Level Sn-Rich Au–Sn Bonding Technique and Its Application in Surface Plasmon Resonance Sensors[J]. Chin. Phys. Lett., 2014, 31(05): 086201
Viewed
Full text


Abstract