Chin. Phys. Lett.  2014, Vol. 31 Issue (08): 086102    DOI: 10.1088/0256-307X/31/8/086102
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Radiation Induced Optical Absorption of Cubic Lead Fluoride Crystals and the Effect of Annealing
REN Guo-Hao1**, CHEN Xiao-Feng1, LI Huan-Ying1, WU Yun-Tao1, SHI Hong-Sheng2, QIN Lai-Shun2
1Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800
2College of Material Sciences and Engineering, Jiliang University of China, Hangzhou 310018
Cite this article:   
REN Guo-Hao, CHEN Xiao-Feng, LI Huan-Ying et al  2014 Chin. Phys. Lett. 31 086102
Download: PDF(588KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Transparent and colorless lead fluoride crystals with sizes of 20×20×20 (mm3) are irradiated with several doses of γ-rays from a 60Co source. Their transmittance spectra before and after irradiation are measured, and a new parameter ΔT=Tb?Ta is defined to evaluate the irradiation damage. Three optical absorption bands peaking at 270 nm, 370 nm and 500 nm are found in the plots of ΔT versus wavelength, and their intensities increase with the irradiation dose. These optical absorption bands, except the one at 270 nm, can recover spontaneously with time. Thermal annealing treatment can enhance this recovery of the transmittance, while the optimum annealing temperature for different samples depends on the irradiation dose.
PACS:  61.80.Cb (X-ray effects)  
  61.80.Ed (γ-ray effects)  
  61.82.Ms (Insulators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/8/086102       OR      https://cpl.iphy.ac.cn/Y2014/V31/I08/086102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
REN Guo-Hao
CHEN Xiao-Feng
LI Huan-Ying
WU Yun-Tao
SHI Hong-Sheng
QIN Lai-Shun
[1] Anderson D F, Kobayashi M, Woody C L and Yoshimura Y 1990 Nucl. Instrum. Methods Phys. Res. Sect. A 290 385
[2] Achenbach P, Altarev I, Grimm K, Hammid T, Harrach D V, Lopes A, Hofmann J, Hofmann H, M Kabu? E, Kobis S, Maas F E, Schilling E and Strǒher H 1998 Nucl. Instrum. Methods Phys. Res. Sect. A 416 357
[3] Yoshimuray and Makia 1975 Nucl. Instrum. Methods Phys. Res. Sect. A 126 541
[4] Achenbach P, Baunack S, Grimm K, Hammid T, Harrach D V, Lopes A, Maas F E, Schilling E and Strǒher H 2001 Nucl. Instrum. Methods Phys. Res. Sect. A 465 318
[5] Appuhn R D, Brasse F, Deckers T, Kolanoski H, Korbel V, Lindner A, Meier K, Speilmann S, Vaikar S, Walther A and Wegener D 1994 Nucl. Instrum. Methods Phys. Res. Sect. A 350 208
[6] Ren G H, Shen D Z, Wang S H and Yin Z W 2001 Chin. Phys. Lett. 18 976
[7] Kozma P, Bajgar R and Kozma P Jr 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 484 149
[8] Xiang X, Zu T, Zhu S, Ding T H and Wang L M 2006 Opt. Mater. 28 930
Related articles from Frontiers Journals
[1] M. P. Sarma, J. M. Kalita, G. Wary. X-Ray Radiation Sensing Properties of ZnS Thin Film: A Study on the Effect of Annealing[J]. Chin. Phys. Lett., 2017, 34(7): 086102
[2] ZHU Xiao-Li, XIE Chang-Qing, ZHANG Man-Hong, LIU Ming, CHEN Bao-Qin, PAN Feng. Fabrication of 11-nm-Wide Silica-Like Lines Using X-Ray Diffraction Exposure[J]. Chin. Phys. Lett., 2009, 26(8): 086102
Viewed
Full text


Abstract