Chin. Phys. Lett.  2014, Vol. 31 Issue (08): 084206    DOI: 10.1088/0256-307X/31/8/084206
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Passive Phase Locking of Three Nanosecond Fiber Amplifiers Using a Dammann Grating Spatial Filter
YANG Yi-Feng1,2, ZHENG Ye1,2, HE Bing1**, ZHOU Jun1**, LIU Hou-Kang1,2, HU Man1,2, WEI Yun-Rong1, LOU Qi-Hong1
1Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800
2University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
YANG Yi-Feng, ZHENG Ye, HE Bing et al  2014 Chin. Phys. Lett. 31 084206
Download: PDF(641KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A passive coherent beam combination of three nanosecond Yb-doped fiber amplifiers by an all-optical feedback loop is realized by a Dammann grating intracavity spatial filter. By using this diffractive-optics-based spatial filtering technique, three tile-aperture laser beams are phase-locked with a peak power of 1.02 kW. The width of the combined pulses is 9.6 ns, and the repetition frequency is 2.208 MHz. The visibility of the far-field interference pattern is up to 82.9%. The results show that this approach can scale to larger arrays and higher powers.
PACS:  42.55.Wd (Fiber lasers)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.60.Fc (Modulation, tuning, and mode locking)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/8/084206       OR      https://cpl.iphy.ac.cn/Y2014/V31/I08/084206
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Yi-Feng
ZHENG Ye
HE Bing
ZHOU Jun
LIU Hou-Kang
HU Man
WEI Yun-Rong
LOU Qi-Hong
[1] Richardson D J, Nilsson J and Clarkson W A 2010 J. Opt. Soc. Am. B 27 63
[2] Zhou P, Liu Z J, Wang X L, Ma Y X, Ma H T and Xu X J 2009 Appl. Phys. Lett. 94 231106
[3] Xue Y H, He B, Zhou J, Li Z, Fan Y Y, Qi Y F, Liu C, Yuan Z J, Zhang H B and Lou Q H 2011 Chin. Phys. Lett. 28 054212
[4] Ma Y X, Wang X L, Leng J Y, Xiao H, Dong X L, Zhu J J, Du W B, Zhou P, Xu X J, Si L, Liu Z J and Zhao Y J 2011 Opt. Lett. 36 951
[5] Liu H K, Xue Y H, Li Z, He B, Zhou J, Ding Y Q, Jiao M L, Liu C, Qi Y F, Wei Y R, Dong J X and Lou Q H 2012 Chin. Phys. Lett. 29 044204
[6] Shay T M, Benham V, Baker J T, Ward B, Sanchez A D, Culpepper M A, Pilkington D, Spring J, Nelson D J and Lu C A 2006 Opt. Express 14 12015
[7] Seise E, Klenke A, Breitkoph S, Limpert J and Tunnermann A 2011 Opt. Lett. 36 3858
[8] Seise E, Klenke A, Breitkoph S, Plotner M, Limpert J and Tunnermann A 2011 Opt. Lett. 36 439
[9] Daniault L, Hanna M, Lombard L, Zaouter Y, Mottay E, Goular D, Bourdon P, Druon F and Georges P 2011 Opt. Lett. 36 621
[10] Daniault L, Hanna M, Lombard L, Zaouter Y, Mottay E, Goular D, Bourdon P, Druon F and Georges P 2012 Opt. Lett. 37 650
[11] Su R T, Zhou P, Wang X L, Ma Y X and Xu X J 2012 Opt. Lett. 37 497
[12] Su R T, Zhou P, Wang X L, Zhang H W and Xu X J 2012 Opt. Lett. 37 3978
[13] Lhermite J, Desfarges-Berthelemot A, Kermene V and Barthelemy A 2007 Opt. Lett. 32 1842
[14] Guillot J, Desfarges-Berthelemot A, Kermene V and Barthelemy A 2011 Opt. Lett. 36 2907
[15] Liu H K, He B, Zhou J, Dong J X, Wei Y R and Lou Q H 2012 Opt. Lett. 37 3885
[16] Bochove E J and Shakir S A 2009 IEEE J. Sel. Top. Quantum Electron. 15 320
[17] Cheung E C, Ho J G, Goodno G D, Rice R R, Rothenberg J, Thielen P, Weber M and Wickham M 2008 Opt. Lett. 33 354
[18] Goodno G D, McNaught S J, Rothenberg J E, McComb T S, Thielen P A, Wickham M G and Weber M E 2010 Opt. Lett. 35 1542
[19] Thielen P A, Ho J G, Burchman D A, Goodno G D, Rothenberg J E, Wickham M G, Flores A, Lu C A, Pulford B, Robin C, Sanchez A D, Hult D and Rowland K B 2012 Opt. Lett. 37 3741
[20] Redmond S M, Ripin D J, Yu C X, Augst S J, Fan T Y, Thielen P A, Rothenberg J E and Goodno G D 2012 Opt. Lett. 37 2832
[21] Zhou C H and Liu L R 1995 Appl. Opt. 34 5961
[22] Fan T Y 2005 IEEE J. Sel. Top. Quantum Electron. 11 567
[23] Morel J, Woodtli A and Dandliker R 1993 Opt. Lett. 18 1520
[24] Leger J R, Swanson G J and Veldkamp W B 1987 Appl. Opt. 26 4391
[25] Yang Y F, Liu H K, Zheng Y, Hu M, Liu C, Qi Y F, He B, Zhou J, Wei Y R and Lou Q H 2014 Opt. Lett. 39 708
[26] Shakir S A, Culver B, Nelson B, Starcher Y, Bates G M and Hedrick J W Jr 2008 Proc. SPIE 7070 70700O
[27] Yang Y F, Hu M, He B, Zhou J, Liu H K, Dai S J, Wei Y R and Lou Q H 2013 Opt. Lett. 38 854
Related articles from Frontiers Journals
[1] Wen-Wen Cui, Xiao-Wei Xing, Yue-Qian Chen, Yue-Jia Xiao, Han Ye, and Wen-Jun Liu. Tunable Dual-Wavelength Fiber Laser in a Novel High Entropy van der Waals Material[J]. Chin. Phys. Lett., 2023, 40(2): 084206
[2] Ming-Xiao Wang, Ping-Xue Li, Yang-Tao Xu, Yun-Chen Zhu, Shun Li, and Chuan-Fei Yao. An All-Fiberized Chirped Pulse Amplification System Based on Chirped Fiber Bragg Grating Stretcher and Compressor[J]. Chin. Phys. Lett., 2022, 39(2): 084206
[3] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 084206
[4] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 084206
[5] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 084206
[6] H. Ahmad, M. F. Ismail, S. N. Aidit. Optically Modulated Tunable O-Band Praseodymium-Doped Fluoride Fiber Laser Utilizing Multi-Walled Carbon Nanotube Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(10): 084206
[7] N. F. Zulkipli, M. Batumalay, F. S. M. Samsamnun, M. B. H. Mahyuddin, E. Hanafi, T. F. T. M. N. Izam, M. I. M. A. Khudus, S. W. Harun. Nanosecond Pulses Generation with Samarium Oxide Film Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(7): 084206
[8] R. Z. R. R. Rosdin, M. T. Ahmad, A. R. Muhammad, Z. Jusoh, H. Arof, S. W. Harun. Nanosecond Pulse Generation with Silver Nanoparticle Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(5): 084206
[9] Lu Li, Rui-Dong Lv, Si-Cong Liu, Zhen-Dong Chen, Jiang Wang, Yong-Gang Wang, Wei Ren. Using Reduced Graphene Oxide to Generate Q-Switched Pulses in Er-Doped Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(11): 084206
[10] Gen Li, Yong Zhou, Shu-Jie Li, PeiJun Yao, Wei-qing Gao, Chun Gu, Li-Xin Xu. Synchronously Pumped Mode-Locked 1.89μm Tm-Doped Fiber Laser with High Detuning Toleration[J]. Chin. Phys. Lett., 2018, 35(11): 084206
[11] M. F. M. Rusdi, M. B. H. Mahyuddin, A. A. Latiff , H. Ahmad, S. W. Harun. Q-Switched Erbium-Doped Fiber Laser Using Cadmium Selenide Coated onto Side-Polished D-Shape Fiber as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(10): 084206
[12] Guan Wang, Lixin Xu, Chun Gu. Passive, Stable and Order-Adjustable SBS Q-Switching Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(8): 084206
[13] Qi-Rong Xiao, Jia-Ding Tian, Yu-Sheng Huang, Xue-Jiao Wang, Ze-Hui Wang, Dan Li, Ping Yan, Ma-Li Gong. Internal Features of Fiber Fuse in a Yb-Doped Double-Clad Fiber at 3kW[J]. Chin. Phys. Lett., 2018, 35(5): 084206
[14] Lei Zhao, Pei-Jun Yao, Chun Gu, Li-Xin Xu. Raman-Assisted Passively Mode-Locked Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(4): 084206
[15] A. Nady, M. F. Baharom, A. A. Latiff, S. W. Harun. Mode-Locked Erbium-Doped Fiber Laser Using Vanadium Oxide as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(4): 084206
Viewed
Full text


Abstract