Chin. Phys. Lett.  2014, Vol. 31 Issue (08): 084205    DOI: 10.1088/0256-307X/31/8/084205
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Spontaneous-Emission Coupling from an Excited Atom into a Symmetrical Metal-Cladding Optical Waveguide
TAN Rong1**, HUANG He1,2
1Laboratory of Optical Information Technology and School of Science, Wuhan Institute of Technology, Wuhan 430073
2School of Physics and Key Laboratory of Fundamental Physical Quantities Measurement of Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
TAN Rong, HUANG He 2014 Chin. Phys. Lett. 31 084205
Download: PDF(615KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We consider the coupling behavior which transfers the energy of the spontaneous emission from an atom embedded in free space into a symmetrical metal-cladding optical waveguide. The ratio for spontaneous emission into the waveguide modes is derived by using a compact form of Green's function for a multilayer. Up to 90% of the spontaneous emission energy fed into the waveguide is demonstrated when the atom is positioned above the waveguide in a limited space range.
PACS:  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  42.25.-p (Wave optics)  
  42.50.-p (Quantum optics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/8/084205       OR      https://cpl.iphy.ac.cn/Y2014/V31/I08/084205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TAN Rong
HUANG He
[1] Kien F L, Gupta S D, Balykin V I and Hakuta K 2005 Phys. Rev. A 72 032509
[2] Klimov V V and Ducloy M 2004 Phys. Rev. A 69 013812
[3] Kien F L, Gupta S D, Nayak K P and Hakuta K 2005 Phys. Rev. A 72 063815
[4] Wu Y and Leung P T 1999 Phys. Rev. A 60 630
[5] Lecamp G, Lalanne P and Hugonin J P 1997 Phys. Rev. Lett. 78 1888
[6] Modoran A and Lafyatis G 2006 arXiv:Quant-ph/0609120
[7] Zheng H X, Gauthier D J and Baranger H U 2012 Phys. Rev. A 85 043832
[8] Kim K T, Kwon H W, Song J W, Lee S, Jung W G and Kang S H 2000 Opt. Commun. 180 37
[9] Sun D, Treat D W and Bour D P 1996 Electron. Lett. 32 1488
[10] Neogi A, Morkoc H, Kuroda T and Tackeuchi A 2005 Opt. Lett. 30 93
[11] Barnes W L and Worthing P T 1999 Opt. Commun. 162 16
[12] Macovei M, Evers J, Li G X and Keitel C H 2007 Phys. Rev. Lett. 98 043602
[13] Li G X, Li F L and Zhu S Y 2001 Phys. Rev. A 64 013819
[14] Wu Y 2000 Phys. Rev. A 61 033803
[15] Tomas M S 1995 Phys. Rev. A 51 2545
[16] Klimov V V and Ducloy M 2005 Phys. Rev. A 72 043809
[17] Li H G, Cao Z Q, Lu H F and Shen Q S 2003 Appl. Phys. Lett. 83 2757
[18] Lu H F, Cao Z Q, Li H G and Shen Q S 2004 Appl. Phys. Lett. 85 4579
[19] Dung H T, Buhmann S Y, Kn?ll L and Welsch D G 2003 Phys. Rev. A 68 043816
[20] Paulus M, Balmaz P G and Martin O J F 2000 Phys. Rev. E 62 5797
[21] Milonni P W and Knight P L 1973 Opt. Commun. 9 119
[22] Yamamoto Y 1991 Coherence Amplification and Quantum Effects in Semiconductor Lasers (New York: Wiley)
Related articles from Frontiers Journals
[1] Kun-Peng Wang, Jun Zhuang, Xiao-Dong He, Rui-Jun Guo, Cheng Sheng, Peng Xu, Min Liu, Jin Wang, Ming-Sheng Zhan. High-Fidelity Manipulation of the Quantized Motion of a Single Atom via Stern–Gerlach Splitting[J]. Chin. Phys. Lett., 2020, 37(4): 084205
[2] Tong Wu, Yuxuan Zhou, Yuan Xu, Song Liu, Jian Li. Landau–Zener–Stückelberg Interference in Nonlinear Regime[J]. Chin. Phys. Lett., 2019, 36(12): 084205
[3] Zhen-Tao Liang, Qing-Xian Lv, Shan-Chao Zhang, Wei-Tao Wu, Yan-Xiong Du, Hui Yan, Shi-Liang Zhu. Coherent Coupling between Microwave and Optical Fields via Cold Atoms[J]. Chin. Phys. Lett., 2019, 36(8): 084205
[4] Fu-Qiang Yu, Mu-Tian Cheng, Shao-Ming Li, Xiao-San Ma, Zhi-Feng Zhu, Xian-Shan Huang. Polarization Conversion of Single Photon via Scattering by a ${\Lambda}$ System in a Semi-Infinite Waveguide[J]. Chin. Phys. Lett., 2019, 36(5): 084205
[5] Long Xu, Li-Bin Fu. Understanding Tunneling Ionization of Atoms in Laser Fields using the Principle of Multiphoton Absorption[J]. Chin. Phys. Lett., 2019, 36(4): 084205
[6] Ce Shi, Mu-Tian Cheng, Xiao-San Ma, Dong Wang, Xianshan Huang, Bing Wang, Jia-Yan Zhang. Nonreciprocal Single Photon Frequency Conversion via Chiral Coupling between a V-Type System and a Pair of Waveguides[J]. Chin. Phys. Lett., 2018, 35(5): 084205
[7] Jin-Song Huang, Jia-Hao Zhang, Yan Wang, Zhong-Hui Xu. Designing Fano-Like Quantum Routing via Atomic Dipole-Dipole Interactions[J]. Chin. Phys. Lett., 2018, 35(3): 084205
[8] Xiu-Mei Wang, Yan-Ling Meng, Ya-Ning Wang, Jin-Yin Wan, Ming-Yuan Yu, Xin Wang, Ling Xiao, Tang Li, Hua-Dong Cheng, Liang Liu. Dick Effect in the Integrating Sphere Cold Atom Clock[J]. Chin. Phys. Lett., 2017, 34(6): 084205
[9] Teng-Fei Meng, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Excitation Dependence of Dipole–Dipole Broadening in Selective Reflection Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(11): 084205
[10] Qi-Chun Liu, Han Cai, Ying-Shan Zhang, Jian-She Liu, Wei Chen. Autler–Townes Splitting in a ${\it \Delta}$-Type Quantum Three-Level System[J]. Chin. Phys. Lett., 2016, 33(07): 084205
[11] Wei-Ting Zhu, Qing-Bao Ren, Li-Wei Duan, Qing-Hu Chen. Entanglement Dynamics of Two Qubits Coupled Independently to Cavities in the Ultrastrong Coupling Regime: Analytical Results[J]. Chin. Phys. Lett., 2016, 33(05): 084205
[12] Chao-Quan Wang, Jian Zou, Zhi-Ming Zhang. Generating Squeezed States of Nanomechanical Resonator via a Flux Qubit in a Hybrid System[J]. Chin. Phys. Lett., 2016, 33(02): 084205
[13] Mu-Tian Cheng, Gen-Long Ye, Wei-Wei Zong, Xiao-San Ma. Single Photon Scattering in a Pair of Waveguides Coupled by a Whispering-Gallery Resonator Interacting with a Semiconductor Quantum Dot[J]. Chin. Phys. Lett., 2016, 33(02): 084205
[14] Yong Cheng, Zheng Tan, Jin Wang, Yi-Fu Zhu, Ming-Sheng Zhan. Observation of Fano-Type Interference in a Coupled Cavity-Atom System[J]. Chin. Phys. Lett., 2016, 33(01): 084205
[15] WANG Ya-Lan, CHENG Zi-Qiang, MA Liang, PENG Xiao-Niu, HAO Zhong-Hua, WANG Qu-Quan. Power-Dependent Luminescence of CdSe/ZnS Nanocrystal Assembled Layer-by-Layer on a Silver Nanorod Array[J]. Chin. Phys. Lett., 2015, 32(03): 084205
Viewed
Full text


Abstract