Chin. Phys. Lett.  2014, Vol. 31 Issue (08): 084101    DOI: 10.1088/0256-307X/31/8/084101
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Application of Ultra-Compact Single Negative Waveguide Metamaterials for a Low Mutual Coupling Patch Antenna Array Design
CAI Tong**, WANG Guang-Ming, LIANG Jian-Gang, ZHUANG Ya-Qiang
Electromagnetic Field and Microwave Technique, Air and Missile Defend College of Air Force Engineering University, Xi'an 710051
Cite this article:   
CAI Tong, WANG Guang-Ming, LIANG Jian-Gang et al  2014 Chin. Phys. Lett. 31 084101
Download: PDF(1129KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A novel ultra-compact single-negative waveguide metamaterial (WG-MTM) based on a complementary anti-parallel-spiral line (CAPAL) is proposed and investigated by circuit model analysis, electromagnetic simulation and extraction of the effective parameters. The cell is ultra-compact with dimensions of λ0/22.08×λ0/22.08, which advances a step further toward homogenized concept. Two band-gaps attributing to the negative permeability and negative permittivity appear when the CAPAL-WG-MTM cells response to the time-varying perpendicular E-field and parallel H-field, and thus a high decoupling efficiency is obtained. Mutual coupling reduction of about 8.27 dB is realized by inserting 7×1 CAPSL-WG-MTM cells between two closely placed antenna elements with an edge-to-edge separation of only λ0/19.23. Moreover, the radiation characteristics are improved for both the patch element and the antenna array. A higher front-to-back ratio is obtained for the patch element and an increase of 0.64 dB for the gain of the antenna array by using the CAPAL-WG-MTM structure.
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  41.20.-q (Applied classical electromagnetism)  
  84.40.Ba (Antennas: theory, components and accessories)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/8/084101       OR      https://cpl.iphy.ac.cn/Y2014/V31/I08/084101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAI Tong
WANG Guang-Ming
LIANG Jian-Gang
ZHUANG Ya-Qiang
[1] Yang F and Rahmat-Samii Y 2003 IEEE Trans. Antennas Propag. 51 2936
[2] Coulombe M, Farzaneh K S and Caloz C 2010 IEEE Trans. Antennas Propag. 58 1076
[3] Bait-Suwailam M M, Siddiqui O F and Ramahi O M 2010 IEEE Antennas Wireless Propag. Lett. 9 876
[4] Kokkinos T, Liakou E and Feresidis A P 2008 Electron. Lett. 44 1442
[5] Li H, Xiong J and He S 2009 IEEE Antennas Wireless Propag. Lett. 8 1107
[6] Yang X M, Liu X G and Cui T J 2012 IEEE Antennas Wireless Propag. Lett. 11 389
[7] Xu H X, Wang G M and Zeng H Y 2012 Opt. Express 20 21968
[8] Bait-Suwailam M M, Boybay M S and Ramahi O M 2010 IEEE Trans. Antennas Propag. 58 2894
[9] Xu H X, Wang G M and Qi M Q 2013 IEEE Trans. Magn. 49 1526
[10] Alu A, Yaghjian A D and Shore R A 2011 Phys. Rev. B 84 054305
[11] Koschny T, Markos P and Smith D R 2005 Phys. Rev. B 71 245105
[12] Smith D R, Vier D C and Koschny T 2005 Phys. Rev. E 71 036617
[13] Chen X d, Grzegorczyk T M and Wu B I 2004 Phys. Rev. E 70 016608
[14] Ozgur I and Karu P E 2008 IEEE Trans. Antennas Propag. 56 3173
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 084101
[2] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams *[J]. Chin. Phys. Lett., 0, (): 084101
[3] Fei Xiang, Lin Zhang, Tao Chen, Yuan-Hong Zhong, Jin Li. Transverse Propagation Characteristics and Coherent Effect of Gaussian Beams[J]. Chin. Phys. Lett., 2020, 37(6): 084101
[4] Zong-Cheng Xu, Liang Wu, Ya-Ting Zhang, De-Gang Xu, Jian-Quan Yao. Photoexcited Blueshift and Redshift Switchable Metamaterial Absorber at Terahertz Frequencies[J]. Chin. Phys. Lett., 2019, 36(12): 084101
[5] Guo-Guo Wei, Chong Miao, Hao-Chong Huang, Hua Gao. Zero Refractive Index Properties of Two-Dimensional Photonic Crystals with Dirac Cones[J]. Chin. Phys. Lett., 2019, 36(3): 084101
[6] Shou-Qing Jia. Finite Volume Time Domain with the Green Function Method for Electromagnetic Scattering in Schwarzschild Spacetime[J]. Chin. Phys. Lett., 2019, 36(1): 084101
[7] Xiao-Xiao Zhang, Zhen-Sen Wu, Xiang Su. Influence of Breaking Waves and Wake Bubbles on Surface-Ship Wake Scattering at Low Grazing Angles[J]. Chin. Phys. Lett., 2018, 35(7): 084101
[8] Wen-Hao Xu, Zhan-Ying Yang, Chong Liu, Wen-Li Yang. Localized Optical Waves in Defocusing Regime of Negative-Index Materials[J]. Chin. Phys. Lett., 2017, 34(10): 084101
[9] Jin-Xing Li, Min Zhang, Peng-Bo Wei. Effects of Breaking Waves on Composite Backscattering from Ship-Ocean Scene[J]. Chin. Phys. Lett., 2017, 34(9): 084101
[10] Mohammad Hosein Fakheri, Hooman Barati, Ali Abdolali. Carpet Cloak Design for Rough Surfaces[J]. Chin. Phys. Lett., 2017, 34(8): 084101
[11] Xiao-Jing Zhang, Xi Wu, Ya-Dong Xu. Controlling of the Polarization States of Electromagnetic Waves Using Epsilon-near-Zero Metamaterials[J]. Chin. Phys. Lett., 2017, 34(8): 084101
[12] D. Basandrai, R. K. Bedi, A. Dhami, J. Sharma, S. B. Narang, K. Pubby, A. K. Srivastava. Radiation Losses in the Microwave X Band in Al-Cr Substituted Y-Type Hexaferrites[J]. Chin. Phys. Lett., 2017, 34(4): 084101
[13] Wei-Na Cui, Hong-Xia Li, Min Sun, Yong-Yuan Zhu. Coupling of Cutoff Modes in a Chain of Nonlinear Metallic Nanorods[J]. Chin. Phys. Lett., 2016, 33(12): 084101
[14] Ming-Liang Liao, Yan-Yu Wei, Hai-Long Wang, Yu Huang, Jin Xu, Yang Liu, Guo Guo, Xin-Jian Niu, Yu-Bin Gong, Gun-Sik Park. An Open Rectangular Waveguide Grating for Millimeter-Wave Traveling-Wave Tubes[J]. Chin. Phys. Lett., 2016, 33(09): 084101
[15] Ming-Liang Liao, Yan-Yu Wei, Hai-Long Wang, Jin Xu, Yang Liu, Guo Guo, Xin-Jian Niu, Yu-Bin Gong, Gun-Sik Park. Design of a Novel Folded Waveguide for 60-GHz Traveling-Wave Tubes[J]. Chin. Phys. Lett., 2016, 33(04): 084101
Viewed
Full text


Abstract