Chin. Phys. Lett.  2014, Vol. 31 Issue (08): 083101    DOI: 10.1088/0256-307X/31/8/083101
ATOMIC AND MOLECULAR PHYSICS |
Velocity Transfer Spectroscopy of Rb 420 nm Transition
ZHANG Li-Guo1, LIU Zhong-Zheng1, TAO Zhi-Ming1,2, LING Li1,3, CHEN Jing-Biao1**
1State Key Laboratory of Advanced Optical Communication System and Network, Institute of Quantum Electronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871
2Department of Physics, Bijie University, Bijie 551700
3Institute of Information and Electronics, Zhejiang University City College, Hangzhou 310015
Cite this article:   
ZHANG Li-Guo, LIU Zhong-Zheng, TAO Zhi-Ming et al  2014 Chin. Phys. Lett. 31 083101
Download: PDF(478KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose and demonstrate the velocity transfer spectroscopy of a V-type energy structure with Rb atoms at 420 nm transition. The weak oscillator strength of a lower excited state for V-type energy structure atoms limits the high signal-to-noise ratio of atomic laser spectroscopy, which can be usually realized by optical-optical double-resonance or double-resonance optical pumping for cascade-type energy structure atoms. For 87Rb atoms, the weak 420 nm transition spectrum between the energy level of 52S1/2 and 62P3/2 is transferred to the spectrum on lower excited states at 780 nm with strong oscillator strength, which is recorded by a 780 nm probe laser. This method, which is similar to the electron-shelving detection method, at a certain degree can indirectly measure a higher excited state transition with weak oscillator strength for any V-type energy structure of atoms by transferring the transition spectrum information of the very weak oscillator strength to the strong oscillator strength in an optical-optical double-resonance configuration.
PACS:  31.70.-f (Effects of atomic and molecular interactions on electronic structure)  
  32.30.Jc (Visible and ultraviolet spectra)  
  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/8/083101       OR      https://cpl.iphy.ac.cn/Y2014/V31/I08/083101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Li-Guo
LIU Zhong-Zheng
TAO Zhi-Ming
LING Li
CHEN Jing-Biao
[1] Ricci L, Weidemuller M, Esslinger T, Hemmerich A, Zimmermann C, Vuletic V, K?nig W and H?nsch T W 1995 Opt. Commun. 117 541
[2] Fuhrer T, Stang D and Walther T 2009 Opt. Express 17 4991
[3] Letokov V and Chebotayev V 1977 Nonlinear Laser Spectroscopy (Berlin: Springer-Verlag)
[4] Tsuchida H, Ohtsu, M, Tako T, Kuramochi N and Oura N 1982 Jpn. J. Appl. Phys. 21 L561
[5] Yabuzaki T, Ibaragi A, Hori H, Kitano M and Ogawa T 1981 Jpn. J. Appl. Phys. 20 L451
[6] Pearman C, Adams C, Cox S, Griffin P, Smith D and Hughes I 2002 J. Phys. B: At. Mol. Opt. Phys. 35 5141
[7] Stert V and Fischer R 1978 Appl. Phys. 17 151
[8] Teets R E, Kowalski F V, Hill W T, Carlson N and H?nsch T W 1977 Laser Spectrosc. 113 80
[9] Teets R, Feinberg R, H?nsch T W and Schawlow A L 1976 Phys. Rev. Lett. 37 683
[10] Carlson N W, Taylor A J, Jones K M and Schawlow A L 1981 Phys. Rev. A 24 822
[11] Wieman C and Hansch T W 1976 Phys. Rev. Lett. 36 1170
[12] Wang D, Wang Y, Tao Z, Zhang S, Hong Y, Zhuang W and Chen J 2013 Chin. Phys. Lett. 30 060601
[13] Urban W and Herrmann W 1978 Appl. Phys. 17 325
[14] Demtr?der W 2008 Laser Spectroscopy: Basic Concepts and Instrumentation (Berlin: Springer-Verlag)
[15] Yang H, Sun B and Li J 1992 Chin. Phys. Lett. 9 133
[16] Wang W, She L, Li J and Gao K 2007 Chin. Phys. Lett. 24 1919
[17] Mohammad N D and Gabriel G B 2009 Chin. Phys. Lett. 26 073302
[18] Suzuki M and Yamaguchi S 1988 IEEE J. Quantum Electron. 24 2392
[19] Johnson M A, Rostas J and Zare R N 1982 Chem. Phys. Lett. 92 225
[20] Bylicki F, Persch G, Mehdizadeh E and Demtr?der W 1989 Chem. Phys. 135 255
[21] Kaminsky M E, Hawkins R T, Kowalski F V and Schawlow A L 1976 Phys. Rev. Lett. 36 671
[22] Schawlow A L 1982 Phys. Scr. 25 333
[23] Brien D P and Swain S 1983 J. Phys. B: At. Mol. Phys. 16 2499
[24] Moon H S, Lee L and Kim J B 2008 Opt. Express 16 12163
[25] Moon H S, Lee W K and Lee L 2004 Appl. Phys. Lett. 85 3965
[26] Yang B, Liang Q, He J, Zhang T and Wang J 2010 Phys. Rev. A 81 043803
[27] Noh H R and Moon H S 2009 Phys. Rev. A 80 022509
[28] Moon H S, Lee L and Kim J B 2007 J. Opt. Soc. Am. B 24 2157
[29] Goto A, Ohki S, Hashi K and Shimizu T 2006 Rev. Sci. Instrum. 77 093904
[30] Nagourney W, Sandberg J and Dehmelt H 1986 Phys. Rev. Lett. 56 2797
[31] Wiseman H M and Milburn G J 1993 Phys. Rev. A 47 1652
[32] Sandhya S N 2007 Phys. Rev. A 75 013809
[33] Riehle F 2004 Frequency Stand (Weinheim: Wiley VCH) pp 248–249
[34] Hemmerich A, McIntyre D H, Zimmermann C and H?nsch T W 1990 Opt. Lett. 15 372
[35] Caliebe E and Niemax K 1979 J. Phys. B 12 L45
[36] Morton D C 2000 Astrophys. J. Suppl. Ser. 130 403
[37] Heavens O S 1961 J. Opt. Soc. Am. A 51 1058
[38] Verolainen Y F and Nikolaich A Y 1982 Sov. Phys. Usp. 25 431
Related articles from Frontiers Journals
[1] Mohammad Noh Daud, Gabriel G. Balint-Kurti. A Time-Dependent Wavepacket Method for Photodissociation Dynamics of Triatomic Molecule[J]. Chin. Phys. Lett., 2009, 26(7): 083101
[2] WANG Wen-Min0g, SHE Lei, LI Jiao-Mei, GAO Ke-Lin. Detection of Isotopes of Mercury Ions by Resonant Ejection in Paul Trap[J]. Chin. Phys. Lett., 2007, 24(7): 083101
[3] YANG Huanwang+, SUN Biao, LI Jiaming. Electronic Structure of Molecular Rydberg States[J]. Chin. Phys. Lett., 1992, 9(3): 083101
Viewed
Full text


Abstract