NUCLEAR PHYSICS |
|
|
|
|
Medium Suppression of In medium Nucleon-Nucleon Cross Sections Predicted with Various Microscopic Calculations |
XING Yong-Zhong1, LU Fei-Ping1, WEI Xiao-Ping2, ZHENG Yu-Ming1,3 |
1Department of Physics, Tianshui Normal University, Tianshui 741000 2School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070 3China Institute of Atomic Energy, Beijing 102413
|
|
Cite this article: |
XING Yong-Zhong, LU Fei-Ping, WEI Xiao-Ping et al 2014 Chin. Phys. Lett. 31 082101 |
|
|
Abstract The nucleon-nucleon cross sections in the dense nuclear matter are microscopically calculated by using Dirac–Brueckner–Hartree–Fock (DBHF) approximation with different covariant representations of the T-matrix, i.e., complete pseudo-vector (CPV), pseudoscalar (PS) and pseudo-vector (PV) choices. Special attention is paid to the discrepancies among the cross sections calculated with these different T-matrix project choices. The results show that the medium suppression of the cross section given by DBHF in the CPV choice is not only smaller than those obtained in both PS and PV choices, but also smaller than the predictions with a nonrelativistic Brueckner–Hartree–Fock (BHF) method including three body force (3BF). The further analysis reveals that the influence of the different choices on the cross section in the DBHF approximation is mainly determined by the state of smaller total angular momentum due to the medium effect being strongly suppressed in the higher angular momentum.
|
|
Published: 28 July 2014
|
|
|
|
|
|
[1] Day B D 1967 Rev. Mod. Phys. 39 719 [2] Lattimer J M and Prakash M 2000 Phys. Rep. 333 121 [3] Cugnon J, Lejeune A and Grange P 1987 Phys. Rev. C 35 861 [4] Schmidt M, Ropke G and Schulz H 1990 Ann. Phys. 202 57 [5] T Alm, G Ropke and M Schmidt 1994 Phys. Rev. C 50 31 [6] Schulze H J, Schnell A, Ropke G and Lombardo U 1997 Phys. Rev. C 55 3006 [7] Li Q F, Li Z X and Zhao E G 2004 Phys. Rev. C 69 017601 [8] Sammarruca F 2013 arXiv:1307.5373v1[nuclth] [9] Aichelin J 1991 Phys. Rep. 202 233 [10] Bertsch G F and Das Gupta S 1988 Phys. Rep. 160 189 [11] Li B A, and Chen L W 2005 Phys. Rev. C 72 064611 [12] Xing Y Z, Liu J Y and Guo W J 2003 Nucl. Phys. A 723 483 [13] Faessler A 1989 Nucl. Phys. A 495 103 [14] Bohnet A, Ohtsuka N, Aichelin J et al 1989 Nucl. Phys. A 494 349 [15] Pandharipande V R and Pieper S C 1992 Phys. Rev. C 45 791 [16] Walecka J D 1974 Ann. Phys. (N. Y.) 83 491 [17] Ansatasio M R, Celenza L S, Pong W S and Shakin C M 1983 Phys. Rep. 100 327 [18] ter Haar B and Malfliet R 1987 Phys. Rep. 149 207 [19] Anastasio M R, Celenza L S, Pong W S and Shakin C M 1983 Phys. Rep. 100 327 [20] Horowitz C J and Serot B D 1987 Nucl. Phys. A 464 613 [21] Li G Q and Mechleidt R 1993 Phys. Rev. C 48 1702 [22] Machleidt R, Holinde K and Elster C 1987 Phys. Rep. 149 1 [23] Zhang H F, Li Z H, Lombardo U et al 2007 Phys. Rev. C 76 054001 [24] Tjon J A and Wallace S J 1985 Phys. Rev. C 32 267 [25] Fuchs C, Waindzoch T, Faessler A and Kosov D S 1998 Phys. Rev. C 58 2022 [26] Fuchs C, Faessler A and Shabshiry M 2001 Phys. Rev. C 64 024003 [27] Machleidt R 1989 Adv. Nucl. Phys. 19 189 [28] Erkelenz K 1974 Phys. Rep. 13 191 [29] Xing Y Z and Zhao X W 2014 Int. J. Mod. Phys. E 23 1450023 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|