Chin. Phys. Lett.  2014, Vol. 31 Issue (08): 080601    DOI: 10.1088/0256-307X/31/8/080601
GENERAL |
On a New Class of Self-Referencing, 1/τ Atomic Clocks
WANG Li-Jun**
1Department of Physics, Tsinghua University, Beijing 100084
2Joint Institute for Measurement Science (JMI), Tsinghua University, Beijing 100084
3Department of Precision Instrument, Tsinghua University, Beijing 100084
4National Institute of Metrology of China, Beijing 100013
Cite this article:   
WANG Li-Jun 2014 Chin. Phys. Lett. 31 080601
Download: PDF(429KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The merit of a modern atomic clock is measured by its phase stability. A clock's absolute time-keeping uncertainty typically worsens over its operating time τ as Δτ∝√τ, with an Allan deviation of σy (τ)=Δτ/τ∝τ?1/2. Here we analyze a new class of self-referencing clocks, whose phase is locked to itself after a certain time delay. We show that the Allan deviation of such clocks decreases as 1/τ over a long and controllable operating time. This class of clocks can maintain synchronization over a prolonged period with only a fixed, almost non-increasing, absolute uncertainty, forming an ideal time-piece.
Published: 28 July 2014
PACS:  06.20.Dk (Measurement and error theory)  
  06.20.F- (Units and standards)  
  06.20.fb (Standards and calibration)  
  06.30.Ft (Time and frequency)  
  07.05.Dz (Control systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/8/080601       OR      https://cpl.iphy.ac.cn/Y2014/V31/I08/080601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Li-Jun
[1] Essen L and Parry J V L 1955 Nature 176 280
[2] Heavner T P, Jefferts S R, Donley E A, Shirley J H and Parker T E 2005 Metrologia 42 411
[3] Ovchinnikov Y and Marra G 2011 Metrologia 48 87
[4] Guena J, Abgrall M, Rovera D, Laurent P, Chupin B, Lours M, Santarelli G, Rosenbusch P, Tobar M E, Ruoxin L, Gibble K, Clairon A and Bize S 2012 IEEE Trans. Ultrason. Ferroelectrics Frequency Control. 59 391
[5] http://www.bipm.org/CCTF/12-18 2012
[6] Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802
[7] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W and Ludlow A D 2013 Science 341 1215
[8] Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L and Ye J 2014 Nature 506 71
[9] Riehle F 2004 Frequency Standards: Basics and Applications (Wiley-VCH, Weinheim)
[10] Dick G J 1987 Proc. 19th Precise Time and Time Interval (PTTI) Applications and Planning Meeting (Redondo Beach, California, USA 1–3 December 1987) pp 133–147
[11] Kleppner D, Goldenberg H M and Ramsey N F 1962 Phys. Rev. 126 603
[12] Shiga N and Takeuchi M 2012 New J. Phys. 14 023034
[13] Biedermann G W, Takase K, Wu X, Deslauriers L, Roy S and Kasevich M A 2013 Phys. Rev. Lett. 111 170802
[14] Leeson D B 1966 Proc. IEEE 54 329
Related articles from Frontiers Journals
[1] Zhao-Min Jia, Xu-Hai Yang, Bao-Qi Sun, Xiao-Ping Zhou, Bo Xiang, Xin-Yu Dou. Direct Digital Frequency Control Based on the Phase Step Change Characteristic between Signals[J]. Chin. Phys. Lett., 2017, 34(9): 080601
[2] ZHANG Jian-Wei, MIAO Kai, WANG Li-Jun. Dick Effect in a Microwave Frequency Standard Based on Laser-Cooled 113Cd+ Ions[J]. Chin. Phys. Lett., 2015, 32(01): 080601
[3] ZHOU Wei, LI Zhi-Qi, BAI Li-Na, XUAN Zong-Qiang, CHEN Fa-Xi, YU Jian-Guo, GAO Jian-Ning, MIAO Miao, DONG Shao-Feng, SONG Hui-Min, WEI Zhong, YE Yun-Xia. Verification and Application of the Border Effect in Precision Measurement[J]. Chin. Phys. Lett., 2014, 31(10): 080601
[4] YU Jian-Guo, ZHOU Wei, DU Bao-Qiang, DONG Shao-Feng, FAN Qiao-Yan. A Novel Super-High Resolution Phase Comparison Approach[J]. Chin. Phys. Lett., 2012, 29(7): 080601
[5] DU Bao-Qiang, ZHOU Wei, YU Jian-Guo, DONG Shao-Feng . On Group Phase Quantization and Its Physical Characteristics[J]. Chin. Phys. Lett., 2011, 28(5): 080601
[6] DU Bao-Qiang, ZHOU Wei. Super-High Resolution Time Interval Measurement Method Based on Time-Space Relationships[J]. Chin. Phys. Lett., 2009, 26(10): 080601
[7] DU Bao-Qiang, ZHOU Wei, DONG Shao-Feng, ZHOU Hai-Niu. A Group-Period Phase Comparison Method Based on Equivalent Phase Comparison Frequency[J]. Chin. Phys. Lett., 2009, 26(7): 080601
[8] LI Zhi-Qi, ZHOU Wei, MIAO Miao, ZHOU Hui, ZHENG Sheng-Feng. A Super High Resolution Distance Measurement Method Based on Phase Comparison[J]. Chin. Phys. Lett., 2008, 25(8): 080601
[9] PAN Shi-Long, LOU Cai-Yun. Theoretical Design of Fibre-Based Digital Autocorrelator for Completely Characterizing Ultrashort Pulses[J]. Chin. Phys. Lett., 2006, 23(2): 080601
[10] KANG Zhi-Ru, FU Guang-Sheng, K. D. Hill. Equations of Propagation of Uncertainty on the ITS-90 in the Sub-ranges from 13.8033K to 933.473K[J]. Chin. Phys. Lett., 2005, 22(3): 080601
[11] ZHOU Zi-Xiang. An observation of Relationship between the Fine Structure Constant and the Gibbs Phenomenon in Fourier Analysis[J]. Chin. Phys. Lett., 2004, 21(2): 080601
[12] HONG Xinguo, LU Kunquan. Torsion Pendulum Method in Viscosity Measurement of Melts[J]. Chin. Phys. Lett., 1995, 12(11): 080601
Viewed
Full text


Abstract