Chin. Phys. Lett.  2014, Vol. 31 Issue (08): 080401    DOI: 10.1088/0256-307X/31/8/080401
GENERAL |
Corrected Stefan–Boltzmann Law and Lifespan of a Black Hole
HE Tang-Mei1, YANG Jin-Bo2, ZHANG Jing-Yi2**
1Laboratory Center, Guangzhou University, Guangzhou 510006
2Center for Astrophysics, Guangzhou University, Guangzhou 510006
Cite this article:   
HE Tang-Mei, YANG Jin-Bo, ZHANG Jing-Yi 2014 Chin. Phys. Lett. 31 080401
Download: PDF(414KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The corrected Stefan–Boltzmann law of black holes in the frame of a generalized uncertainty principle is derived through the Planck equation of thermal radiation. The result is different from the flat spacetime: a corrected T6 term induced by the generalized uncertainty principle emerges; the coefficient of the T4 term is no longer a constant while related with the spacetime in the vicinity of the event horizon and the thin film model. Applying this corrected law to black hole radiation, the highest temperature in the final time of the radiation and the corresponding remnant with a mass of order of Planck mass are obtained. The lifespan of black holes is also corrected, however, the correction is extremely small.
Published: 28 July 2014
PACS:  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/8/080401       OR      https://cpl.iphy.ac.cn/Y2014/V31/I08/080401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HE Tang-Mei
YANG Jin-Bo
ZHANG Jing-Yi
[1] Bekenstein J D 1973 Phys. Rev. D 7 2333
[2] Bardeen J M, Carter B and Hawking S W 1973 Commun. Math. Phys. 31 161
[3] Hawking S W 1975 Commun. Math. Phys. 43 199
[4] Parikh M K and Wilczek F 2000 Phys. Rev. Lett. 85 5042
[5] Parikh M K 2004 arXiv:hep-th/0402166
[6] Parikh M K 2004 Int. J. Mod. Phys. D 13 2351
[7] Zhang J and Zhao Z 2005 Mod. Phys. Lett. A 20 1673
[8] Zhang J and Zhao Z 2005 J. High Energy Phys. 10 055
[9] Zhang J and Zhao Z 2005 Nucl. Phys. B 725 173
[10] Zhang J and Zhao Z 2006 Phys. Lett. B 638 110
[11] Zhang J and Fan J 2007 Chin. Phys. 16 3879
[12] Zhang J and Fan J 2007 Phys. Lett. B 648 133
[13] He T and Zhang J 2007 Chin. Phys. Lett. 24 3336
[14] Jiang Q, Wu S and Cai X 2006 Phys. Rev. D 73 064003
[15] Li X and Zhao Z 2000 Phys. Rev. D 62 104001
[16] Li X 2002 Phys. Lett. B 540 9
[17] Chang L N et al 2002 Phys. Rev. D 65 125028
[18] Zhang J and Zhao Z 2005 Phys. Lett. B 618 14
[19] He T et al 2013 Int. J. Theor. Phys. 52 2796
Related articles from Frontiers Journals
[1] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 080401
[2] Chi-Kun Ding. Gravitational Perturbations in Einstein Aether Black Hole Spacetime[J]. Chin. Phys. Lett., 2018, 35(10): 080401
[3] Chang-Qing Liu, Chi-Kun Ding, Ji-Liang Jing. Effects of Homogeneous Plasma on Strong Gravitational Lensing of Kerr Black Holes[J]. Chin. Phys. Lett., 2017, 34(9): 080401
[4] Mahamat Saleh, Bouetou Bouetou Thomas, Timoleon Crepin Kofane. Energy and Thermodynamics of the Quantum-Corrected Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 080401
[5] Jun Liang. The $P$–$v$ Criticality of a Noncommutative Geometry-Inspired Schwarzschild-AdS Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 080401
[6] M. Azam, A. Aslam. Accretion onto the Magnetically Charged Regular Black Hole[J]. Chin. Phys. Lett., 2017, 34(7): 080401
[7] Xiao-Xiong Zeng, Xin-Yun Hu, Li-Fang Li. Effect of Phantom Dark Energy on Holographic Thermalization[J]. Chin. Phys. Lett., 2017, 34(1): 080401
[8] Jun-Jin Peng, Wen-Chang Xiang, Shao-Hong Cai. Abbott–Deser–Tekin Charge of Dilaton Black Holes with Squashed Horizons[J]. Chin. Phys. Lett., 2016, 33(08): 080401
[9] Belhaj A., Chabab M., El Moumni H., Masmar K., Sedra M. B.. On Hawking Radiation of 3D Rotating Hairy Black Holes[J]. Chin. Phys. Lett., 2015, 32(10): 080401
[10] MA Meng-Sen, ZHAO Ren. Notes on Phase Transition of Nonsingular Black Hole[J]. Chin. Phys. Lett., 2015, 32(03): 080401
[11] ZHANG Ming, YUE Rui-Hong, YANG Zhan-Ying. Critical Behavior of Black Holes in an Einstein–Maxwell Gravity with a Conformal Anomaly[J]. Chin. Phys. Lett., 2015, 32(02): 080401
[12] LAI Chu-Yu, CHEN Ju-Hua, WANG Yong-Jiu. The Motion of Spinning Particles in the Spacetime of a Black Hole with a Cosmic String Topological Defect[J]. Chin. Phys. Lett., 2014, 31(09): 080401
[13] Ahmad Sheykhi. Quasi-Topological Cosmology from Emergence of Cosmic Space[J]. Chin. Phys. Lett., 2014, 31(2): 080401
[14] FANG Heng-Zhong, ZHOU Kai-Hu. Emission of Phonons from a Rotating Sonic Black Hole[J]. Chin. Phys. Lett., 2014, 31(1): 080401
[15] G. Abbas, R. M. Ramzan. Thermodynamics of Phantom Energy Accreting onto a Black Hole in Einstein–Power–Maxwell Gravity[J]. Chin. Phys. Lett., 2013, 30(10): 080401
Viewed
Full text


Abstract