Chin. Phys. Lett.  2014, Vol. 31 Issue (07): 078901    DOI: 10.1088/0256-307X/31/7/078901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Two Typical Discontinuous Transitions Observed in a Generalized Achlioptas Percolation Process
HU Jian-Quan1, YANG Hong-Chun1**, YANG Yu-Ming2, FU Chuan-Ji1, YANG Chun2, SHI Xiao-Hong2, JIA Xiao1
1Institute of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054
2School of Mathematical Science, University of Electronic Science and Technology of China, Chengdu 610054
Cite this article:   
HU Jian-Quan, YANG Hong-Chun, YANG Yu-Ming et al  2014 Chin. Phys. Lett. 31 078901
Download: PDF(1133KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We extend the Achlioptas percolation (AP) process [Achlioptas et al. Science 323 (2009) 1453] to two generalized Achlioptas percolation processes named GAP1 and GAP2. GAP1 induces a weighted probability factor α in the node sampling process and excludes the intracluster links. Based on GAP1, GAP2 requires m pairs of nodes sampled to add m candidate links that should be residing in 2m different clusters at each step. In the evolution of GAP1, the phase transition can evolve from the continuous to the 'most explosive' percolation as the value of the factor α is decreasing to a certain negative number. It indicates that there might be a type of discontinuous transition induced by the probability modulation effect even in the thermodynamic limit, and the most explosive percolation is only one of its extreme cases. We analyze the characteristics of the evolving process of the two-nodes-clusters and the cluster-size distribution at the transformation point for different α; the numerical results suggest that there might be a critical value α0 and the phase transition should be discontinuous (αα0) or continuous (α>α0). In the evolution of GAP2, twice phase transitions are observed successively and the time duration between them becomes shorter till they amalgamate into the 'most explosive' percolation. The first transition is induced by the probability modulation effect analyzed in GAP1, the second transition, induced by the three coexisting giant clusters, is always discontinuous and the maximum jump of order parameter approaches N/3 while the value of the factor α is increasing to 1.4 approximately. In this work, two typical discontinuous transitions induced respectively by the probability modulation and the extended local competition are exhibited in GAP2, which might provide references to analyze the discontinuous phase transition in networks further.
Published: 30 June 2014
PACS:  89.75.Hc (Networks and genealogical trees)  
  89.75.Fb (Structures and organization in complex systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/7/078901       OR      https://cpl.iphy.ac.cn/Y2014/V31/I07/078901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU Jian-Quan
YANG Hong-Chun
YANG Yu-Ming
FU Chuan-Ji
YANG Chun
SHI Xiao-Hong
JIA Xiao
[1] Fourtuin C M and Kasteleyn P W 1972 Physica 57 536
[2] Stauffer D and Aharony A 1994 Introduction to Percolation Theory (London: Taylor & Francis)
[3] Sahimi M 1994 Application of Percolation Theory (London: Taylor & Francis)
[4] Moore C and Newman M E J 2000 Phys. Rev. E 61 5678
[5] Pastor-Satorras R and Vespignani A 2001 Phys. Rev. Lett. 86 3200
[6] Albert R and Barabasi A 2002 Rev. Mod. Phys. 74 47
[7] Dorogovtsev S and Mendes J 2002 Adv. Phys. 51 1079
[8] Cohen R and Havlin S 2003 Phys. Rev. Lett. 90 058701
[9] Erd? P and Rényi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17
[10] Grimmett G 1996 Percolation (New York: Springer)
[11] Callaway D et al 2001 Phys. Rev. E 64 041902
[12] Béla Bollobás 2001 Random Graphs (Cmbridge: Cambridge University Press)
[13] Dorogovtsev S N, Goltsev A V and Mendes J F F 2008 Rev. Mod. Phys. 80 1275
[14] Achlioptas D, D'Souza R M and Spencer J 2009 Science 323 1453
Costa et al 2010 Phys. Rev. Lett. 105 255701
[15] Riordan O and Warnke L 2011 Science 333 322
[16] Nagler J, Levina A and Timme M 2011 Nat. Phys. 7 265
[17] Grassberger P et al 2011 Phys. Rev. Lett. 106 225701
[18] Radicchi F and Fortunato S 2010 Phys. Rev. E 81 036110
[19] D'Souza R M and Mitzenmacher M 2010 Phys. Rev. Lett. 104 195702
[20] Cho Y S et al 2010 Phys. Rev. E 82 042102
[21] Friedman E J and Landsberg A S 2009 Phys. Rev. Lett. 103 255701
[22] Rozenfeld H D, Gallos L K and Makse H A 2010 Eur. Phys. J. B 75 305
[23] Chen W and D'Souza R M 2011 Phys. Rev. Lett. 106 115701
[24] Araújo N A M and Herrmann H J 2010 Phys. Rev. Lett. 105 035701
[25] Cho Y S, Hwang S, Herrmann H J and Kahng B 2013 Science 339 1185
[26] Cho Y H, Kim J S, Kahng B and Kim D 2009 Phys. Rev. Lett. 103 135702
[27] Lee H K, Kim B J and Park H 2011 Phys. Rev. E 84 020101(R)
Related articles from Frontiers Journals
[1] Qing-Xian Wang, Jun-Jie Zhang, Xiao-Yu Shi, Ming-Sheng Shang. User Heterogeneity and Individualized Recommender[J]. Chin. Phys. Lett., 2017, 34(6): 078901
[2] Wen Xiao, Chao Yang, Ya-Ping Yang, Yu-Guang Chen. Phase Transition in Recovery Process of Complex Networks[J]. Chin. Phys. Lett., 2017, 34(5): 078901
[3] Rui-Wu Niu, Gui-Jun Pan. Self-Organized Optimization of Transport on Complex Networks[J]. Chin. Phys. Lett., 2016, 33(06): 078901
[4] Liu-Hua Zhu. Effects of Reduced Frequency on Network Configuration and Synchronization Transition[J]. Chin. Phys. Lett., 2016, 33(05): 078901
[5] Xiu-Lian Xu, Chun-Ping Liu, Da-Ren He. A Collaboration Network Model with Multiple Evolving Factors[J]. Chin. Phys. Lett., 2016, 33(04): 078901
[6] Wei Zheng, Qian Pan, Chen Sun, Yu-Fan Deng, Xiao-Kang Zhao, Zhao Kang. Fractal Analysis of Mobile Social Networks[J]. Chin. Phys. Lett., 2016, 33(03): 078901
[7] Yi-Run Ruan, Song-Yang Lao, Yan-Dong Xiao, Jun-De Wang, Liang Bai. Identifying Influence of Nodes in Complex Networks with Coreness Centrality: Decreasing the Impact of Densely Local Connection[J]. Chin. Phys. Lett., 2016, 33(02): 078901
[8] HU Dong, SUN Xian, LI Ping, CHEN Yan, ZHANG Jie. Factors That Affect the Centrality Controllability of Scale-Free Networks[J]. Chin. Phys. Lett., 2015, 32(12): 078901
[9] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 078901
[10] BAI Liang, XIAO Yan-Dong, HOU Lv-Lin, LAO Song-Yang. Smart Rewiring: Improving Network Robustness Faster[J]. Chin. Phys. Lett., 2015, 32(07): 078901
[11] LI Ling, GUAN Ji-Hong, ZHOU Shui-Geng. Efficiency-Controllable Random Walks on a Class of Recursive Scale-Free Trees with a Deep Trap[J]. Chin. Phys. Lett., 2015, 32(03): 078901
[12] JING Xing-Li, LING Xiang, HU Mao-Bin, SHI Qing. Random Walks on Deterministic Weighted Scale-Free Small-World Networks with a Perfect Trap[J]. Chin. Phys. Lett., 2014, 31(08): 078901
[13] LING Xiang. Effect of Mixing Assortativity on Extreme Events in Complex Networks[J]. Chin. Phys. Lett., 2014, 31(06): 078901
[14] ZHANG Xiao-Ke, WU Jun, TAN Yue-Jin, DENG Hong-Zhong, LI Yong . Structural Robustness of Weighted Complex Networks Based on Natural Connectivity[J]. Chin. Phys. Lett., 2013, 30(10): 078901
[15] ZHANG Yong, JU Xian-Meng, ZHANG Li-Jie, XU Xin-Jian. Statistics of Leaders in Index-Driven Networks[J]. Chin. Phys. Lett., 2013, 30(5): 078901
Viewed
Full text


Abstract