CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
TixSb2Te Thin Films for Phase Change Memory Applications |
TANG Shi-Yu1, LI Run2, OU Xin1, XU Han-Ni1, XIA Yi-Dong1**, YIN Jiang1, LIU Zhi-Guo1 |
1Department of Materials Science and Engineering, and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 2Department of Physics, and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093
|
|
Cite this article: |
TANG Shi-Yu, LI Run, OU Xin et al 2014 Chin. Phys. Lett. 31 078503 |
|
|
Abstract Sb2Te films with different Ti contents (TixSb2Te) are derived via the target-attachment method by using the magnetron sputtering technique. The effects of the Ti content on the phase change characteristics and the microstructures are investigated by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy and atom force microcopy. Resistance-temperature measurements are carried out to reveal the enhanced crystallization temperature of TixSb2Te films, indicating a better thermal stability in such films. Both the activation energy and the temperature for 10 y data retention increase with increasing the concentration of Ti. It indicates that the crystallization of the amorphous Sb2Te film could be suppressed by the introduction of Ti. The improvement of crystallization temperature and the thermal stability of the amorphous Sb2Te film results from the introduction of Ti in Sb-Te bond that decreases the binding energy of Sb 4d and Te 4d.
|
|
Published: 30 June 2014
|
|
PACS: |
85.35.-p
|
(Nanoelectronic devices)
|
|
68.60.Dv
|
(Thermal stability; thermal effects)
|
|
81.15.Cd
|
(Deposition by sputtering)
|
|
|
|
|
[1] Ren K, Rao F, Song Z T, Wu L C, Zhou X L, Xia M J, Liu B, Feng S L, Xi W, Yao D N and Chen B 2010 Chin. Phys. Lett. 27 108101 [2] Li R, Tang S Y, Bai G, Yin Q N, Lan X X, Xia Y D, Yin J and Liu Z G 2013 Chin. Phys. Lett. 30 058101 [3] Yamada N, Ohno E, Nishiuchi K, Akahira N and Takao M 1991 J. Appl. Phys. 69 2849 [4] Czubatyj W, Hudgens S J, Dennison C, Schell C and Lowrey T 2010 IEEE Electron Device Lett. 31 869 [5] Zhu M, Wu L C, Rao F, Song Z T, Peng C, Li X L, Yao D N, Xi W and Feng S L 2011 Electrochem. Solid-State Lett. 14 H404 [6] Perniola L, Sousa V, Fantini A, Arbaoui E, Bastard A, Armand M, Fargeix A, Jahan C, Nodin J F, Persico A, Blachier D, Toffoli A, Loubriat S, Gourvest E, Beneventi G B, Feldis H, Maitrejean S, Lhostis S, Roule A, Cueto O, Reimbold G, Poupinet L, Billon T, Salvo B D, Bensahel D, Mazoyer P, Annunziata R, Zuliani P and Boulanger F 2010 IEEE Electron Device Lett. 31 488 [7] Song S N, Song Z T, Liu B, Wu L C and Feng S L 2010 Appl. Phys. A 99 767 [8] Zhu M, Wu L C, Song Z T, Rao F, Cai D L, Cheng P, Zhou X L, Ren K, Song S N, Liu B and Feng S L 2012 Appl. Phys. Lett. 100 122101 [9] Huang Y J, Chen Y C and Hsieh T E 2009 J. Appl. Phys. 106 034916 [10] Zhu H, Yin J, Xia Y D and Liu Z G 2010 Appl. Phys. Lett. 97 083504 [11] Wang G X, Nie Q H, Shen X, Wang R P, Wu L C and Lv Y G 2012 Mater. Lett. 87 135 [12] Burr G W, Breitwisch M J, Franceschini M, Garetto D, Gopalakrishnan K, Jackson B, Kurdi B, Lam C, Lastras L A, Padilla A, Rajendran B, Raoux S and Shenoy R S 2010 J. Vac. Sci. Technol. B 28 223 [13] Wu Z Q and Wang B 2001 Growth Thin Film (Beijing: Science Press) p 395 (in Chinese) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|