CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Micrograting Displacement Sensor with Integrated Electrostatic Actuation |
YAO Bao-Yin1,2**, FENG Li-Shuang1,2, WANG Xiao1,2, LIU Wei-Fang1,2, LIU Mei-Hua1,2 |
1Key Laboratory of Micro-nano Measurement-Manipulation and Physics (Ministry of Education), Beihang University, Beijing 100191 2Fundamental of Science on Novel Inertial Instrument & Navigation System Technology Laboratory, Beihang University, Beijing 100191
|
|
Cite this article: |
YAO Bao-Yin, FENG Li-Shuang, WANG Xiao et al 2014 Chin. Phys. Lett. 31 078501 |
|
|
Abstract A high-resolution micro-grating displacement sensor with diffraction-based and integrated electrostatic actuation is proposed and experimentally demonstrated. The Al reflecting membrane is fabricated at the bottom of a silicon moving part and the Au micro-gratings are patterned on a transparent substrate. This structure forms a phase sensitive diffraction grating, providing the displacement sensitivity of the micro-grating interferometer. It shows sensitivity adjustment and self-calibration capabilities with electrostatic actuation. Additional system components include a coherent light source, photodiodes, and required electronics. Experimental results show that the displacement sensor has a sensitivity of about 1.8 mV/nm and a resolution of less than 1 nm in the linear region. This displacement sensor is very promising in the fields requiring high sensitivity, broad dynamic range, and immunity to electromagnetic interference.
|
|
Published: 30 June 2014
|
|
PACS: |
85.85.+j
|
(Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)
|
|
87.85.Va
|
(Micromachining)
|
|
42.79.Dj
|
(Gratings)
|
|
|
|
|
[1] Knobel R G and Cleland A N 2003 Nature 424 291 [2] Li Y G et al 2003 Meas. Sci. Technol. 14 479 [3] Scheeper P R et al 2003 J. Microelectromech. Syst. 12 880 [4] Eaton W P and Smith J H 1997 Smart Mater. Struct. 6 530 [5] Scheeper P R et al 1994 Sens. Actuators A 44 1 [6] Stampfer C et al 2006 Nano Lett. 6 1449 [7] Suh W et al 2005 J. Appl. Phys. 98 033102 [8] Yao B Y et al 2012 Chin. Phys. Lett. 29 118502 [9] He Y M et al 2003 Chin. Phys. Lett. 20 1397 [10] Hariharan P 2003 Optical Interferometry 2nd edn (San Diego: Academic Press) [11] Yu X M, Zhang D C, Wang C S, Du X F, Wang X B and Ruan Y 2003 Chin. Phys. Lett. 20 1637 [12] Petersen M, Olthuis W and Bergveld P 1998 J. Microelectromech. Syst. 7 387 [13] van der Donk A G H, Scheeper P R, Olthuis W and Bergveld P 1994 Sens. Actuators A 40 203 [14] Etxebarria V, Lucas J, Feuchtwanger J, Sadeghzadeh A, Hassanzadegan H, Garmendia N and Portilla J 2010 IEEE Sens. J. 10 1335 [15] Hall N A, Okandan M and Littrell R 2008 J. Microelectromech. Syst. 17 37 [16] Zhao S S, Hou C L and Bai J 2011 Appl. Opt. 50 1413 [17] Hall N A, Lee W and Degertekin F L 2003 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50 1570 [18] Mu C J, Zhang F L and Wu Y M 2007 Chin. Phys. Lett. 24 3574 [19] Manalis S R, Minne S C, Atalar A and Quate C F 1996 Appl. Phys. Lett. 69 3944 [20] Yaralioglu G G, Atalar A, Manalis S R and Quate C F 1998 J. Appl. Phys. 83 7405 [21] Loh N C, Schmidt M A and Manalis S R 2002 J. Microelectromech. Syst. 11 182 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|