CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Radio-Frequency Performance of Epitaxial Graphene Field-Effect Transistors on Sapphire Substrates |
LIU Qing-Bin, YU Cui, LI Jia, SONG Xu-Bo, HE Ze-Zhao, LU Wei-Li, GU Guo-Dong, WANG Yuan-Gang, FENG Zhi-Hong** |
National Key Laboratory of ASIC, Hebei Semiconductor Research Institute, Shijiazhuang 050051
|
|
Cite this article: |
LIU Qing-Bin, YU Cui, LI Jia et al 2014 Chin. Phys. Lett. 31 078104 |
|
|
Abstract We report dc and the first-ever measured small signal rf performance of epitaxial graphene field-effect transistors (GFETs), where the epitaxial graphene is grown by chemical vapor deposition (CVD) on a 2-inch c-plane sapphire substrate. Our epitaxial graphene material has a good flatness and uniformity due to the low carbon concentration during the graphene growth. With a gate length Lg=100 nm, the maximum drain source current Ids and peak transconductance gm reach 0.92 A/mm and 0.143 S/mm, respectively, which are the highest results reported for GFETs directly grown on sapphire. The extrinsic cutoff frequency (fT) and maximum oscillation frequency (fmax) of the device are 12 GHz and 9.5 GHz, and up to 32 GHz and 21.5 GHz after de-embedding, respectively. Our work proves that epitaxial graphene on sapphire substrates is a promising candidate for rf electronics.
|
|
Published: 30 June 2014
|
|
|
|
|
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Hwang E H, Adam S and Sarma S D 2007 Phys. Rev. Lett. 98 186806 [3] Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A, R?hrl J, Rotenberg E, Schmid A K, Waldmann D, Weber H B and Seyller T 2009 Nat. Mater. 8 203 [4] Yu C, Li J, Liu Q B, Dun S B, He Z Z, Zhang X W, Cai S J and Feng Z H 2013 Appl. Phys. Lett. 102 013107 [5] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312 [6] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H and Iijima S 2010 Nat. Nanotechnol. 5 574 [7] Hwang J H, Shields V B, Thomas C I, Shivaraman S, Hao D, Kim M Y, Woll A R, Tompa G S and Spencer M G 2010 J. Cryst. Growth 312 3219 [8] Miyasaka Y, Nakamura A and Temmyo J 2011 Jpn. J. Appl. Phys. 50 04DH12 [9] Fanton M A, Robinson J A, Puls C, Liu Y, Hollander M J, Weiland B E, Labella M, Trumbull K, Kasarda R, Howsare C, Stitt J and Snyder D W 2011 ACS Nano 5 8062 [10] Hwang J, Kim M, Campbell D, Alsalman H A, Kwak J Y, Shivaraman S, Woll A R, Singh A K, Hennig R G, Gorantla S, Rümmeli M H and Spencer M G 2013 ACS Nano 7 385 [11] Ferrari A C 2007 Solid State Commun. 143 47 [12] Can?ado L G, Takai K, Enoki T, Endo M, Kim Y A, Mizusaki H, Jorio A, Coelho L N, Magalhaes-Paniago R and Pimenta M A 2006 Appl. Phys. Lett. 88 163106 [13] Feng Z H, Yu C, Li J, Liu Q B, He Z Z, Song X B, Wang J J and Cai S J 2014 Carbon 75 249 [14] Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A and Avouris P 2010 Science 327 662 [15] Rutherglen C, Jain D and Burke P 2009 Nat. Nanotechnol. 4 811 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|