CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Structure and Magnetic Properties of (In,Mn)As Based Core-Shell Nanowires Grown on Si(111) by Molecular-Beam Epitaxy |
PAN Dong1, WANG Si-Liang1,2**, WANG Hai-Long1, YU Xue-Zhe1, WANG Xiao-Lei1, ZHAO Jian-Hua1** |
1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2Central Research Academy of Dongfang Electric Corporation, Chengdu 611731
|
|
Cite this article: |
PAN Dong, WANG Si-Liang, WANG Hai-Long et al 2014 Chin. Phys. Lett. 31 078103 |
|
|
Abstract We report the structure and magnetic properties of (In,Mn)As based core-shell nanowires grown on Si (111) by molecular-beam epitaxy. Compared to the core InAs nanowire with a flat side facet and consistent diameter, the core-shell nanowire shows a rough sidewall and an inverse tapered geometry. X-ray diffraction, transmission electron microscopy and energy-dispersive x-ray spectroscopy show that (In,Mn)As is formed on the side facets of InAs nanowires with a mixture of wurtzite and zinc-blende structures. Two ferromagnetic transition temperatures of (In,Mn)As from magnetic measurement data are observed: one is less than 25 K, which could be attributed to the magnetic phase with diluted Mn atoms in the InAs matrix, and the other is at ~300 K, which may originate from the undetectable secondary phases such as MnAs nanoclusters. The synthesis of (In,Mn)As based core-shell nanowires provides valuable information to exploit a new type of spintronic nano-materials.
|
|
Published: 30 June 2014
|
|
PACS: |
81.07.Gf
|
(Nanowires)
|
|
62.23.St
|
(Complex nanostructures, including patterned or assembled structures)
|
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
75.75.Cd
|
(Fabrication of magnetic nanostructures)
|
|
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
|
|
|
[1] Yang P D, Yan R X and Fardy M 2010 Nano Lett. 10 1529 [2] Li Y, Qian F, Xiang J and Lieber C M 2006 Mater. Today 9 18 [3] Heedt S, Morgan C, Weis K, Bürgler D E, Calarco R, Hardtdegen H, Grützmacher D and Sch?pers Th 2012 Nano Lett. 12 4437 [4] Gao C X, Farshchi R, Roder C, Dogan P and Brandt O 2011 Phys. Rev. B 83 245323 [5] Hilse M, Takagaki Y, Herfort J, Ramsteiner M, Herrmann C, Breuer S, Geelhaar L and Riechert H 2009 Appl. Phys. Lett. 95 133126 [6] Dellas N S, Liang J, Cooley B J, Samarth N and Mohney S E 2010 Appl. Phys. Lett. 97 072505 [7] Liang J, Wang J, Paul A, Cooley B J, Rench D W, Dellas N S, Mohney S E, Engel-Herbert R and Samarth N 2012 Appl. Phys. Lett. 100 182402 [8] Hilse M, Takagaki Y, Ramsteiner M, Herfort J, Breuer S, Geelhaar L and Riechert H 2011 J. Cryst. Growth 323 307 [9] Hilse M, Herfort J, Jenichen B, Trampert A, Hanke M, Schaaf P, Geelhaar L and Riechert H 2013 Nano Lett. 13 6203 [10] Bryllert T, Wernersson L E, Fr?berg L E and Samuelson L IEEE Electron Device Lett. 5 323 [11] Tomioka K, Motohisa J, Hara S and Fukui T 2008 Nano Lett. 8 3475 [12] Wei W, Bao X Y, Soci C, Ding Y, Wang Z L and Wang D L 2009 Nano Lett. 9 2926 [13] Ghalamestani S G, Johansson S, Borg B M, Dick K A and Wernersson L E 2012 Phys. Status Solidi C 9 206 [14] Yan X, Zhang X, Li J S, Lü X L, Ren X M and Huang Y Q 2013 Chin. Phys. B 22 076102 [15] Ihn S G and Song G I 2007 Nanotechnology 18 355603 [16] Koblmüller G, Hertenberger S, Vizbaras K, Bichler M, Bao F, Zhang J P and Abstreiter G 2010 Nanotechnology 21 365602 [17] Hertenberger S, Rudolph D, Bolte S, D?blinger M, Bichler M, Spirkoska D, Finley J J, Abstreiter G and Koblmüller G 2011 Appl. Phys. Lett. 98 123114 [18] Dimakis E, Lahnemann J, Jahn U, Breuer S, Hilse M, Geelhaar L and Riechert H 2011 Cryst. Growth Des. 11 4001 [19] Pan D, Fu M Q, Yu X Z, Wang X L, Zhu L J, Nie S H, Wang S L, Chen Q, Xiong P, von Molnár S and Zhao J H 2014 Nano Lett. 14 1214 [20] Munekata H, Ohno H, von Molnár S, Segmuller A, Chang L L and Esaki L 1989 Phys. Rev. Lett. 63 1849 [21] Marta G, Buczko R and Kacman P 2011 Nano Lett. 11 3319 [22] Rudolph A, Soda M, Kiessling M, Wojtowicz T, Schuh D, Wegscheider W, Zweck J, Back C and Reiger E 2009 Nano Lett. 9 3860 [23] Yu X Z, Wang H L, Pan D, Zhao J H, Misuraca J, von Molnár S and Xiong P 2013 Nano Lett. 13 1572 [24] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019 [25] Ohno H, Munekata H, Penney T, von Molnár S and Chang L L 1992 Phys. Rev. Lett. 68 2664 [26] Blattner A J and Wessels B W 2002 J. Vac. Sci. Technol. B 20 1582 [27] Wang W Z, Deng J J, Lu J, Sun B Q and Zhao J H 2007 Appl. Phys. Lett. 91 202503 [28] Hilpert S and Dieckelman T 1911 Ber. Dtch. Chem. Ges. A 44 2378 [29] Das A K, Pampuch C, Ney A, Hesjedal T, D?weritz L, Koch R and Ploog K H 2003 Phys. Rev. Lett. 91 087203 [30] Ono K, Okabayashi J, Mizuguchi M, Oshima M, Fujimori A and Akinaga H 2002 J. Appl. Phys. 91 8088 [31] Park J H, Kim M G, Jang H M, Ryu S and Kim Y M 2004 Appl. Phys. Lett. 84 1338 [32] Markovich V, Rozenberg E, Shames A I, Gorodetsky G, Fita I, Puzniak R, Shulyatev D A and Mukovskii Ya M 2002 Phys. Rev. B 65 144402 [33] Hamaya K, Koike T, Taniyama T, Fujii T, Kitamoto Y and Yamazaki Y 2006 Phys. Rev. B 73 155204 [34] Zhou Y K, Asahi H, Asakura J, Okumura S, Asami K and Gonda S 2000 J. Cryst. Growth 221 605 [35] Jeon H C, Jeong Y S, Kang T W, Kim T W, Chung K J, Chung K J, Jhe W and Song S A 2002 Adv. Mater. 14 1725 [36] Xiu F X, Wang Y, Kim J Y, Hong A, Tang J S, Jacob A P, Zou J and Wang K L 2010 Nat. Mater. 9 337 [37] Xu F, Huang P W, Huang J H, Lee W N, Chin T S, Ku H C and Li S D 2011 J. Appl. Phys. 109 07C106 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|