Chin. Phys. Lett.  2014, Vol. 31 Issue (07): 078103    DOI: 10.1088/0256-307X/31/7/078103
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Structure and Magnetic Properties of (In,Mn)As Based Core-Shell Nanowires Grown on Si(111) by Molecular-Beam Epitaxy
PAN Dong1, WANG Si-Liang1,2**, WANG Hai-Long1, YU Xue-Zhe1, WANG Xiao-Lei1, ZHAO Jian-Hua1**
1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2Central Research Academy of Dongfang Electric Corporation, Chengdu 611731
Cite this article:   
PAN Dong, WANG Si-Liang, WANG Hai-Long et al  2014 Chin. Phys. Lett. 31 078103
Download: PDF(3475KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the structure and magnetic properties of (In,Mn)As based core-shell nanowires grown on Si (111) by molecular-beam epitaxy. Compared to the core InAs nanowire with a flat side facet and consistent diameter, the core-shell nanowire shows a rough sidewall and an inverse tapered geometry. X-ray diffraction, transmission electron microscopy and energy-dispersive x-ray spectroscopy show that (In,Mn)As is formed on the side facets of InAs nanowires with a mixture of wurtzite and zinc-blende structures. Two ferromagnetic transition temperatures of (In,Mn)As from magnetic measurement data are observed: one is less than 25 K, which could be attributed to the magnetic phase with diluted Mn atoms in the InAs matrix, and the other is at ~300 K, which may originate from the undetectable secondary phases such as MnAs nanoclusters. The synthesis of (In,Mn)As based core-shell nanowires provides valuable information to exploit a new type of spintronic nano-materials.
Published: 30 June 2014
PACS:  81.07.Gf (Nanowires)  
  62.23.St (Complex nanostructures, including patterned or assembled structures)  
  75.50.Pp (Magnetic semiconductors)  
  75.75.Cd (Fabrication of magnetic nanostructures)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/7/078103       OR      https://cpl.iphy.ac.cn/Y2014/V31/I07/078103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PAN Dong
WANG Si-Liang
WANG Hai-Long
YU Xue-Zhe
WANG Xiao-Lei
ZHAO Jian-Hua
[1] Yang P D, Yan R X and Fardy M 2010 Nano Lett. 10 1529
[2] Li Y, Qian F, Xiang J and Lieber C M 2006 Mater. Today 9 18
[3] Heedt S, Morgan C, Weis K, Bürgler D E, Calarco R, Hardtdegen H, Grützmacher D and Sch?pers Th 2012 Nano Lett. 12 4437
[4] Gao C X, Farshchi R, Roder C, Dogan P and Brandt O 2011 Phys. Rev. B 83 245323
[5] Hilse M, Takagaki Y, Herfort J, Ramsteiner M, Herrmann C, Breuer S, Geelhaar L and Riechert H 2009 Appl. Phys. Lett. 95 133126
[6] Dellas N S, Liang J, Cooley B J, Samarth N and Mohney S E 2010 Appl. Phys. Lett. 97 072505
[7] Liang J, Wang J, Paul A, Cooley B J, Rench D W, Dellas N S, Mohney S E, Engel-Herbert R and Samarth N 2012 Appl. Phys. Lett. 100 182402
[8] Hilse M, Takagaki Y, Ramsteiner M, Herfort J, Breuer S, Geelhaar L and Riechert H 2011 J. Cryst. Growth 323 307
[9] Hilse M, Herfort J, Jenichen B, Trampert A, Hanke M, Schaaf P, Geelhaar L and Riechert H 2013 Nano Lett. 13 6203
[10] Bryllert T, Wernersson L E, Fr?berg L E and Samuelson L IEEE Electron Device Lett. 5 323
[11] Tomioka K, Motohisa J, Hara S and Fukui T 2008 Nano Lett. 8 3475
[12] Wei W, Bao X Y, Soci C, Ding Y, Wang Z L and Wang D L 2009 Nano Lett. 9 2926
[13] Ghalamestani S G, Johansson S, Borg B M, Dick K A and Wernersson L E 2012 Phys. Status Solidi C 9 206
[14] Yan X, Zhang X, Li J S, Lü X L, Ren X M and Huang Y Q 2013 Chin. Phys. B 22 076102
[15] Ihn S G and Song G I 2007 Nanotechnology 18 355603
[16] Koblmüller G, Hertenberger S, Vizbaras K, Bichler M, Bao F, Zhang J P and Abstreiter G 2010 Nanotechnology 21 365602
[17] Hertenberger S, Rudolph D, Bolte S, D?blinger M, Bichler M, Spirkoska D, Finley J J, Abstreiter G and Koblmüller G 2011 Appl. Phys. Lett. 98 123114
[18] Dimakis E, Lahnemann J, Jahn U, Breuer S, Hilse M, Geelhaar L and Riechert H 2011 Cryst. Growth Des. 11 4001
[19] Pan D, Fu M Q, Yu X Z, Wang X L, Zhu L J, Nie S H, Wang S L, Chen Q, Xiong P, von Molnár S and Zhao J H 2014 Nano Lett. 14 1214
[20] Munekata H, Ohno H, von Molnár S, Segmuller A, Chang L L and Esaki L 1989 Phys. Rev. Lett. 63 1849
[21] Marta G, Buczko R and Kacman P 2011 Nano Lett. 11 3319
[22] Rudolph A, Soda M, Kiessling M, Wojtowicz T, Schuh D, Wegscheider W, Zweck J, Back C and Reiger E 2009 Nano Lett. 9 3860
[23] Yu X Z, Wang H L, Pan D, Zhao J H, Misuraca J, von Molnár S and Xiong P 2013 Nano Lett. 13 1572
[24] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[25] Ohno H, Munekata H, Penney T, von Molnár S and Chang L L 1992 Phys. Rev. Lett. 68 2664
[26] Blattner A J and Wessels B W 2002 J. Vac. Sci. Technol. B 20 1582
[27] Wang W Z, Deng J J, Lu J, Sun B Q and Zhao J H 2007 Appl. Phys. Lett. 91 202503
[28] Hilpert S and Dieckelman T 1911 Ber. Dtch. Chem. Ges. A 44 2378
[29] Das A K, Pampuch C, Ney A, Hesjedal T, D?weritz L, Koch R and Ploog K H 2003 Phys. Rev. Lett. 91 087203
[30] Ono K, Okabayashi J, Mizuguchi M, Oshima M, Fujimori A and Akinaga H 2002 J. Appl. Phys. 91 8088
[31] Park J H, Kim M G, Jang H M, Ryu S and Kim Y M 2004 Appl. Phys. Lett. 84 1338
[32] Markovich V, Rozenberg E, Shames A I, Gorodetsky G, Fita I, Puzniak R, Shulyatev D A and Mukovskii Ya M 2002 Phys. Rev. B 65 144402
[33] Hamaya K, Koike T, Taniyama T, Fujii T, Kitamoto Y and Yamazaki Y 2006 Phys. Rev. B 73 155204
[34] Zhou Y K, Asahi H, Asakura J, Okumura S, Asami K and Gonda S 2000 J. Cryst. Growth 221 605
[35] Jeon H C, Jeong Y S, Kang T W, Kim T W, Chung K J, Chung K J, Jhe W and Song S A 2002 Adv. Mater. 14 1725
[36] Xiu F X, Wang Y, Kim J Y, Hong A, Tang J S, Jacob A P, Zou J and Wang K L 2010 Nat. Mater. 9 337
[37] Xu F, Huang P W, Huang J H, Lee W N, Chin T S, Ku H C and Li S D 2011 J. Appl. Phys. 109 07C106
Related articles from Frontiers Journals
[1] Dong Pan, Huading Song, Shan Zhang, Lei Liu, Lianjun Wen, Dunyuan Liao, Ran Zhuo, Zhichuan Wang, Zitong Zhang, Shuai Yang, Jianghua Ying, Wentao Miao, Runan Shang, Hao Zhang, and Jianhua Zhao. In Situ Epitaxy of Pure Phase Ultra-Thin InAs-Al Nanowires for Quantum Devices[J]. Chin. Phys. Lett., 2022, 39(5): 078103
[2] Ke-Jie Wang, Wei Wang, Min-Hao Zhang, Xiao-Qian Zhang, Pei Yang, Bo Liu, Ming Gao, Da-Wei Huang, Jun-Ran Zhang, Yu-Jie Liu, Xue-Feng Wang, Feng-Qiu Wang, Liang He, Yong-Bing Xu, Rong Zhang. Weak Anti-Localization and Quantum Oscillations in Topological Crystalline Insulator PbTe[J]. Chin. Phys. Lett., 2017, 34(2): 078103
[3] M. A. Khan, A. Qayyum, I. Ahmed, T. Iqbal, A. A. Khan, R. Waleed, B. Mohuddin, M. Malik. Copper Ion Beam Irradiation-Induced Effects on Structural, Morphological and Optical Properties of Tin Dioxide Nanowires[J]. Chin. Phys. Lett., 2016, 33(07): 078103
[4] Peng Ren, Gang Han, Bing-Lei Fu, Bin Xue, Ning Zhang, Zhe Liu, Li-Xia Zhao, Jun-Xi Wang, Jin-Min Li. Selective Area Growth and Characterization of GaN Nanorods Fabricated by Adjusting the Hydrogen Flow Rate and Growth Temperature with Metal Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2016, 33(06): 078103
[5] YANG Shuang, DOU Xiu-Ming, YU Ying, NI Hai-Qiao, NIU Zhi-Chuan, JIANG De-Sheng, SUN Bao-Quan. Single-Photon Emission from GaAs Quantum Dots Embedded in Nanowires[J]. Chin. Phys. Lett., 2015, 32(07): 078103
[6] CHENG Ying, ZOU Ji-Jun, WAN Ming, WANG Wei-Lu, PENG Xin-Cun, FENG Lin, DENG Wen-Juan, ZHU Zhi-Fu. Factors Affecting the Top Stripping of GaAs Microwire Array Fabricated by Inductively Coupled Plasma Etching[J]. Chin. Phys. Lett., 2015, 32(5): 078103
[7] YANG You-Wen, LI Tian-Ying, ZHU Wen-Bin, MA Dong-Ming, CHEN Dong. Fabrication and Characterization of Single-Crystalline AgSbTe Nanowire Arrays[J]. Chin. Phys. Lett., 2013, 30(10): 078103
[8] LI Lin, MA Chao, YANG Huai-Xin, LI Jian-Qi. Splitting Process of Na-Birnessite Nanosheet via Transmission Electron Microscopy[J]. Chin. Phys. Lett., 2013, 30(8): 078103
[9] ZHAO Zhi-Fei, LI Xin-Hua, WEN Long, GUO Hao-Min, BU Shao-Jiang, WANG Yu-Qi. Orientation and Structure of Controllable GaAs Nanowires Grown on GaAs (311)B Substrates by Molecular Beam Epitaxiy[J]. Chin. Phys. Lett., 2012, 29(11): 078103
[10] YU Zhi-Guo, CHEN Peng YANG Guo-Feng, LIU Bin, XIE Zi-Li, XIU Xiang-Qian, WU Zhen-Long, XU Feng, XU Zhou, HUA Xue-Mei, HAN Ping, SHI Yi ZHANG Rong, ZHENG You-Dou. Influence of Dry Etching Damage on the Internal Quantum Efficiency of Nanorod InGaN/GaN Multiple Quantum Wells[J]. Chin. Phys. Lett., 2012, 29(7): 078103
[11] FENG Qiu-Ju**, JIANG Jun-Yan, TAO Peng-Cheng, LIU Shuang, XU Rui-Zhuo, LI Meng-Ke, SUN Jing-Chang . The Fabrication and Characterization of Well Aligned Petal-Like Arsenic-Doped Zinc Oxide Microrods[J]. Chin. Phys. Lett., 2011, 28(10): 078103
[12] WEI Ang, WANG Zhao, PAN Liu-Hua, LI Wei-Wei, XIONG Li, DONG Xiao-Chen**, HUANG Wei** . Room-Temperature NH Gas Sensor Based on Hydrothermally Grown ZnO Nanorods[J]. Chin. Phys. Lett., 2011, 28(8): 078103
[13] LIU Zhan-Hui, XIU Xiang-Qian**, YAN Huai-Yue, ZHANG Rong, XIE Zi-Li, HAN Ping, SHI Yi, ZHENG You-Dou . Gallium Nitride Nanowires Grown by Hydride Vapor Phase Epitaxy[J]. Chin. Phys. Lett., 2011, 28(5): 078103
[14] BIAN Fei, WANG Rui, YANG Huai-Xin, ZHANG Xin-Zheng, LI Jian-Qi, XU Hong-Xing, XU Jing-Jun, ZHAO Ji-Min. Laser-Driven Silver Nanowire Formation: Effect of Femtosecond Laser Pulse Polarization[J]. Chin. Phys. Lett., 2010, 27(8): 078103
[15] YE Xian, HUANG Hui, REN Xiao-Min, YANG Yi-Su, GUO Jing-Wei, HUANG Yong-Qing, WANG Qi. Growth of Pure Zinc Blende GaAs Nanowires: Effect of Size and Density of Au Nanoparticles[J]. Chin. Phys. Lett., 2010, 27(4): 078103
Viewed
Full text


Abstract