Chin. Phys. Lett.  2014, Vol. 31 Issue (07): 078101    DOI: 10.1088/0256-307X/31/7/078101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Resistive Switching Behavior in Amorphous Aluminum Oxide Film Grown by Chemical Vapor Deposition
QUAN Xiao-Tong, ZHU Hui-Chao**, CAI Hai-Tao, ZHANG Jia-Qi, WANG Xiao-Jiao
School of Electronic Science and Technology, Dalian University of Technology, Dalian 116024
Cite this article:   
QUAN Xiao-Tong, ZHU Hui-Chao, CAI Hai-Tao et al  2014 Chin. Phys. Lett. 31 078101
Download: PDF(728KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The repeatable bipolar resistive switching phenomenon is observed in amorphous Al2O3 prepared by metal-organic chemical vapor deposition on ITO glass, with ITO as the bottom electrode and Ag as the top electrode. The crystal structure, morphology, composition and optical properties of Al2O3 thin films are investigated by x-ray diffraction, x-ray photoelectron spectroscopy, atomic force microscopy and ultraviolet-visible-infrared spectroscopy, respectively. The electronic character of Ag/Al2O3/ITO structure is tested by an Agilent B1500A. The device shows a typical bipolar resistive switching behavior under the dc voltage sweep mode at room temperature. The variation ratio between HRS and LRS is larger than nearly three orders of magnitude, which indicates the good potential of this structure in future resistive random access memory (ReRAM) applications. Based on the conductive filament model, the high electric field is considered the main reason for the resistive switching according to our measurements.
Published: 30 June 2014
PACS:  81.05.Gc (Amorphous semiconductors)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/7/078101       OR      https://cpl.iphy.ac.cn/Y2014/V31/I07/078101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QUAN Xiao-Tong
ZHU Hui-Chao
CAI Hai-Tao
ZHANG Jia-Qi
WANG Xiao-Jiao
[1] Waser R and Aono M 2007 Nat. Mater. 6 833
[2] Xu D L, Tang M H, Zeng B W, Xiao Y G and Wang Z P 2013 Chin. Phys. B 22 117314
[3] Strukov D B, Snider G S, Stewart D G and Williams R S 2008 Nature 453 80
[4] Hur J H, Lee M J, Lee C B, Kim Y B and Kim C J 2010 Phys. Rev. B 82 155321
[5] Kim K M, Choi B J and Hwang C S 2007 Appl. Phys. Lett. 90 242906
[6] Wei X Y, Zhang K L, Wang F, Zhao J S and Miao Y P 2013 Chin. Phys. B 22 37201
[7] Chen X, Ma X, Yang Y, Chen L, Xiong G, Lian G, Yang Y and Yang J 2011 Appl. Phys. Lett. 98 122102
[8] Kim S, Jeong H Y, Choi S Y and Choi Y K 2010 Appl. Phys. Lett. 97 033508
[9] Kim D C et al 2006 Appl. Phys. Lett. 88 202102
[10] Chen Y S et al 2010 Appl. Phys. Lett. 97 262112
[11] Lee S, Kim H, Yun D J, Rhee S W and Yong K 2009 Appl. Phys. Lett. 95 262113
[12] Yan X, Li K, Yin J, Xia Y, Guo H, Chen L and Liu Z 2010 Electrochem. Solid-State Lett. 13 H87
[13] Szot K, Speier W, Bihlmayer G and Waser R 2006 Nat. Mater. 5 312
[14] Menke T, Meuffels P, Dittmann R, Szot K and Waser R 2009 J. Appl. Phys. 105 066104
[15] Watanabe Y, Bednorz J G, Bietsch A, Gerber C, Widmer D, Beck A and Wind S J 2001 Appl. Phys. Lett. 78 3738
[16] Muenstermann R, Menke T, Dittmann R and Waser R 2010 Adv. Mater. 22 4819
[17] Chen Y, Chen L, Lian G and Xiong G 2009 J. Appl. Phys. 106 023708
[18] Xiong G C, Chen Y S, Chen L P and Lian G J 2008 Chin. Phys. Lett. 25 3378
[19] Kim S and Choi Y K 2009 IEEE Trans. Electron Devices 56 3049
[20] Yu L E, Kim S, Ryu M K, Choi S Y and Choi Y K 2008 IEEE Electron Device Lett. 29 331
[21] Fujii T, Kawasaki M, Sawa S, Akoh H, Kawazoe Y and Y Tokura 2005 Appl. Phys. Lett. 86 012107
[22] Sawa A, Fujii T, Kawasaki M and Tokura Y 2004 Appl. Phys. Lett. 85 4073
[23] Mitkova M, Wang Y and Boolchand P 1999 Phys. Rev. Lett. 83 3848
[24] Odagawa A, Sato H, Inoue I, Akoh H, Kawasaki M, Tokura Y, Kanno T and Adachi H 2004 Phys. Rev. B 70 224403
[25] Seo S et al 2004 Appl. Phys. Lett. 85 5655
[26] Hench L L 1991 J. Am. Ceram. Soc. 74 1487
[27] Zhao Q, Xu X, Zhang H, Chen Y, Xu J and Yu D 2004 Appl. Phys. A 79 1721
[28] Thielsch R, Gatto A, Heber J and Kaiser N 2002 Thin Solid Films 410 86
[29] Ferri D, Bürgi T and Baiker A 2001 J. Phys. Chem. B 105 3187
[30] Juppo M, Rahtu A, Ritala M and Leskel? M 2000 Langmuir 16 4034
[31] Groner M, Fabreguette F, Elam J and George S 2004 Chem. Mater. 16 639
[32] Sun B, Liu Y X, Liu L F, Xu N, Wang Y, Liu X Y, Han R Q and Kang J F 2009 J. Appl. Phys. 105 061630
Related articles from Frontiers Journals
[1] Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan, and Qing Wan. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics[J]. Chin. Phys. Lett., 2022, 39(11): 078101
[2] Bojing Lu, Rumin Liu, Siqin Li, Rongkai Lu, Lingxiang Chen, Zhizhen Ye, and Jianguo Lu. Room-Temperature Processed Amorphous ZnRhCuO Thin Films with p-Type Transistor and Gas-Sensor Behaviors[J]. Chin. Phys. Lett., 2020, 37(9): 078101
[3] Chong Wang, Hao Zhong, Eddy Simoen, Xiang-Dong Jiang, Ya-Dong Jiang, Wei Li. Structural Variation and Its Influence on the $1/f$ Noise of a-Si$_{1-x}$Ru$_{x}$ Thin Films Embedded with Nanocrystals[J]. Chin. Phys. Lett., 2019, 36(2): 078101
[4] Yue Zhang, Cao Yu, Miao Yang, Lin-Rui Zhang, Yong-Cai He, Jin-Yan Zhang, Xi-Xiang Xu, Yong-Zhe Zhang, Xue-Mei Song, Hui Yan. Significant Improvement of Passivation Performance by Two-Step Preparation of Amorphous Silicon Passivation Layers in Silicon Heterojunction Solar Cells[J]. Chin. Phys. Lett., 2017, 34(3): 078101
[5] Qiu-Xue Jin, Bo Liu, Yan Liu, Wei-Wei Wang, Heng Wang, Zhen Xu, Dan Gao, Qing Wang, Yang-Yang Xia, Zhi-Tang Song, Song-Lin Feng. Three-Dimensional Simulations of RESET Operation in Phase-Change Random Access Memory with Blade-Type Like Phase Change Layer by Finite Element Modeling[J]. Chin. Phys. Lett., 2016, 33(09): 078101
[6] ZUO Ze-Wen, CUI Guang-Lei, WANG Yu, WANG Jun-Zhuan, PU Lin, SHI Yi. GISAXS and ATR-FTIR Studies on Stress-Induced Microstructure Evolution of a-Si:H under H2 Plasma Exposure[J]. Chin. Phys. Lett., 2012, 29(10): 078101
[7] GONG Yue-Feng, SONG Zhi-Tang, LING Yun, LIU Yan, LI Yi-Jin, FENG Song-Lin. Three-Dimensional Finite Element Simulations for the Thermal Characteristics of PCRAMs with Different Buffer Layer Materials[J]. Chin. Phys. Lett., 2010, 27(8): 078101
[8] GONG Yue-Feng, SONG Zhi-Tang, LING Yun, LIU Yan, FENG Song-Lin. Simulation of SET Operation in Phase-Change Random Access Memories with Heater Addition and Ring-Type Contactor for Low-Power Consumption by Finite Element Modeling[J]. Chin. Phys. Lett., 2009, 26(11): 078101
[9] DING Xu-Li, LI Qing-Shan, KONG Xiang-He. Optical and Electrical Properties Evolution of Diamond-Like Carbon Thin Films with Deposition Temperature[J]. Chin. Phys. Lett., 2009, 26(2): 078101
[10] GONG Yue-Feng, LING Yun, SONG Zhi-Tang, FENG Song-Lin. Simulation of Phase-Change Random Access Memory with Ring-Type Contactor for Low Reset Current by Finite Element Modelling[J]. Chin. Phys. Lett., 2008, 25(9): 078101
[11] Raid A. Ismail, Kadhim A. Hubeatir, Abdullah K. Abass. Amorphous/Crystalline (n-n) Si Heterojunction Photodetector Made by Q-Switched 0.532-mm Laser Pulses with Novel Technique[J]. Chin. Phys. Lett., 2006, 23(2): 078101
[12] DONG Liang, YUE Rui-Feng, LIU Li-Tian, ZHANG Wan-Jie. Freestanding a-Si Thin Film Transistor for Room-Temperature Infrared Detection[J]. Chin. Phys. Lett., 2004, 21(2): 078101
[13] MAO Dong-sheng, ZHAO Jun, LI Wei, WANG Xi, LIU Xiang-huai, ZHU Yu-kun, ZHOU Jiang-yun, FAN Zhong, LI Qiong, XU Jing-fang. Electron Field Emission from Different sp3 Content Diamond-Like Carbon Films[J]. Chin. Phys. Lett., 1999, 16(2): 078101
Viewed
Full text


Abstract