Chin. Phys. Lett.  2014, Vol. 31 Issue (07): 077803    DOI: 10.1088/0256-307X/31/7/077803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Silver Nanoparticle Fabrication by Laser Ablation in Polyvinyl Alcohol Solutions
Halimah Mohamed. K1**, Mahmoud Goodarz Naseri2**, Amir Reza Sadrolhosseini3, Arash Dehzangi4, Ahmad Kamalianfar5, Elias B Saion1, Reza Zamiri1, Hossein Abastabar Ahangar6, Burhanuddin Y. Majlis4
1Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
2Department of Physics, Faculty of Science, Malayer University, Malayer, Iran
3Wireless and Photonics Networks Research Center of Excellence (WiPNET), Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
4Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
5Department of Physics, Jahrom University, Jahrom, Iran
6Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
Cite this article:   
Halimah Mohamed. K, Mahmoud Goodarz Naseri, Amir Reza Sadrolhosseini et al  2014 Chin. Phys. Lett. 31 077803
Download: PDF(569KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A laser ablation technique is applied for synthesis of silver nanoparticles in different concentrations of polyvinyl alcohol (PVA) aqueous solution. The ablation of high pure silver plate in the solution is carried out by a nanosecond Q-switched Nd:YAG pulsed laser. X-ray diffraction and transmission electron microscopy are implemented to explore the particles sizes. The effects of PVA concentrations on the absorbance of the silver nanoparticles are studied as well, by using a UV-vis spectrophotometer. The preparation process is carried out for deionized water as a reference sample. The comparison of the obtained results with the reference sample shows that the formation efficiency of nanoparticles in PVA is much higher and the sizes of particles are also smaller.
Published: 30 June 2014
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  79.20.Eb (Laser ablation)  
  78.30.Jw (Organic compounds, polymers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/7/077803       OR      https://cpl.iphy.ac.cn/Y2014/V31/I07/077803
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Halimah Mohamed. K
Mahmoud Goodarz Naseri
Amir Reza Sadrolhosseini
Arash Dehzangi
Ahmad Kamalianfar
Elias B Saion
Reza Zamiri
Hossein Abastabar Ahangar
Burhanuddin Y. Majlis
[1] Khanna P K and Nair C K K 2009 Int. J. Green Nanotechnol.: Phys. Chem. 1 P3
[2] Xie Y, Ye R and Liu H 2006 Colloids Surf. A 279 175
[3] Maillard M, Giorgo S and Pileni M P 2002 Adv. Mater. 14 1084
[4] Pillai Z S and Kamat P V 2004 J. Phys. Chem. B 108 945
[5] Patel K, Kapoor S, Dave D P and Murherjee T 2005 J. Chem. Sci. 117 53
[6] Salkar R A, Jeevanandam P, Aruna S T, Koltypin Y and Gedanken A 1999 J. Mater. Chem. 9 1333
[7] Soroushian B, Lampre I, Belloni J and Mostafavi M 2005 Radiat. Phys. Chem. 72 111
[8] Starowicz M, Stypula B and Banaoe J 2006 Electrochem. Commun. 8 227
[9] Naseri M G, Saion E B, Ahangar H A and Shaari A H 2013 Mater. Res. Bull. 48 1439
[10] Naseri M G, Halimah M K, Dehzangi A, Kamalianfar A, Saion E and Burhanuddin Y M 2014 J. Phys. Chem. Solids 75 315
[11] Naseri M G, MajlesAra M H Saion E B and Shaari A H 2014 J. Magn. Magn. Mater. 350 141
[12] Maggioni G, Vomiero A, Carturan S, Scian C, Mattei G, Bazzan M, Fernandez C J, Mazzoldi P, Quaranta A and Mea G D 2004 Appl. Phys. Lett. 85 5712
[13] Bogle K A, Dhole S D and Bhoraskar V N 2006 Nanotechnology 17 3204
[14] Gangopadhyay P, Kesavmoorthy R, Bera S, Magudapathy P, Nair K G M, Panigrahi B K and Narasimhan S V 2005 Phys. Rev. Lett. 94 47403
[15] Da Silva E C, Da Silva M G A, Meneghetti S M P, Machado G M, Alencar A R C, Hickmann J M and Meneghetti M R 2008 J. Nanopart. Res. 10 201
[16] Rao C R K and Trivedi D C 2005 Synth. Met. 155 324
[17] Patakfalvi R, Viranyi Z and Dekany I 2004 Colloid Polym. Sci. 283 299
[18] Villa A, Wang D, Sheng Su D and Prati L 2009 ChemCatChem 1 510
[19] Yoksan R and Chirachanchai S 2009 Mater. Chem. Phys. 115 296
[20] Kong H and Jang J 2006 Chem. Commun. 28 3010
[21] Panacek A, Kolar M, Vecerova R, Prucek R, Soukupova J, Krystof V, Hamal P, Zboril R and Kvitek L 2009 Biomaterials 30 6333
[22] Pencheva D, Bryaskova R and Kantardjiev T 2012 Mater. Sci. Eng. C 32 2048
[23] Dowling D P, Betts A J, Pope C, McConnell M L, Eloy R and Arnaud M N 2003 Surf. Coat. Technol. 163 637
[24] Giuffrida S, Costanzo L L, Ventimiglia G and Bongiorno C 2008 J. Nanopart. Res. 10 1183
[25] Sadrolhosseini A R, Noor A S M, Shameli K, Mamdoohi G, Moksin M M and Mahdi M A 2013 J. Mater. Res. 28 2629
[26] Takeshi T, Iryo K, Nishimura Y and Tsuji M 2001 J. Photochem. Photobiol. A: Chem. 145 201
[27] Perriere J, Millon E and Fogarassi E 2006 Recent Adv. Laser Process. Material (Amsterdam: Elsevier) chap 1 pp 1–36
[28] Sylvestre J P, Kabashin A V, Sacher E, Meunier M and Luong J H T 2004 J. Am. Chem. Soc. 126 7176
[29] Sylvestre J P, Kabashin A V, Sacher E and Meunier M 2005 Appl. Phys. A 80 753
[30] Zamiri R, Zakaria A, Ahangar H A, Sadrolhosseini A R and Mahdi M A 2010 Int. J. Mol. Sci. 11 4764
[31] Zamiri R, Azmi Z, Sadrolhosseini A R, Ahangar H A, Zaidan A W and Mahdi M A 2011 Int. J. Nanomed. 6 71
[32] Darroudi M, Ahmad M B, Zamiri R, Abdullah A H, Ibrahim N A and Sadrolhosseini A R 2011 Solid State Sci. 13 520
[33] Zamiri R, Azmi B Z, Naseri M G, Ahangar H A, Darroudi M and Nazarpour F K 2011 Appl. Phys. A 105 255
[34] Hahn A, Barcikowski S and Chichkov B N 2008 J. Laser Micro/Nanoeng. 3 73
[35] Mafune F, Kohno J Y, Takeda Y, Kondow T and Sawabe H 2000 J. Phys. Chem. B 104 8333
[36] Besner S, Kabashin A V, Winnik F W and Meunier M 2008 Appl. Phys. A 93 955
[37] Aye L H, Choopun S and Chairuangsri T 2010 Adv. Mater. Res. 93-94 83
[38] Luoa Y and Sun X 2007 Mater. Lett. 61 2015
[39] Bogle K A, Dhole S D and Bhoraskar V N 2006 Nanotechnology 17 3204
[40] Cullity B D 1978 Elements X-ray Diffraction (London: Addison-Wesley) chap 6 p 102
[41] Tomita Y, Robinson P B, Tong R P and Blake J R 2002 J. Fluid Mech. 466 259
[42] Kawaguchi Y, Ding X, Narazaki A, Sato T and Niino H 2005 Appl. Phys. A 80 275
[43] Kabashin A V and Meunier M 2003 J. Appl. Phys. 94 7941
[44] Zhu S, Lu Y F and Hong M H 2001 Appl. Phys. Lett. 79 1396
[45] Yang G W 2007 Prog. Mater. Sci. 52 648
Related articles from Frontiers Journals
[1] Zengle Cao, Fengrui Hu, Zaiqin Man, Chunfeng Zhang, Weihua Zhang, Xiaoyong Wang, and Min Xiao. Trion-Facilitated Dexter-Type Energy Transfer in a Cluster of Single Perovskite CsPbBr$_{3}$ Nanocrystals[J]. Chin. Phys. Lett., 2020, 37(12): 077803
[2] Jing Zhang, Yong-Gang Xu, Jian-Xin Zhang, Lu-Lu Guan, Yong-Fang Li. Bright-Dark Mode Coupling Model of Plasmons[J]. Chin. Phys. Lett., 2020, 37(3): 077803
[3] Yi-Tao Yang, Chong-Hong Zhang, Chang-Hao Su, Zhao-Nan Ding, Yin Song, Yu-Guang Chen. Aligned Elongation of Ag Nanoparticles Embedded in Silica Irradiated with High Energy Ni Ions[J]. Chin. Phys. Lett., 2018, 35(9): 077803
[4] Si Xiao, Hui Wang, Sheng Liu, Min Li, Ying-Wei Wang, Jia-Zhang Chen, Lu-Hua Guo, Jian-Bo Li, Jun He. Saturable Absorption Enchantment of Au Nanorods Based on Energy Transfer between Longitudinal and Transverse Energy Levels[J]. Chin. Phys. Lett., 2018, 35(6): 077803
[5] Lu-Hua Guo, Ying-Wei Wang, Yong-Qiang Jiang, Si Xiao, Jun He. Dependence of Nonlinear Optical Response of Anatase TiO$_{2}$ on Shape and Excitation Intensity[J]. Chin. Phys. Lett., 2017, 34(7): 077803
[6] Jiang Qin, Peng Lang, Bo-Yu Ji, N. K. Alemayehu, Han-Yan Tao, Xun Gao, Zuo-Qiang Hao, Jing-Quan Lin. Imaging Ultrafast Plasmon Dynamics within a Complex Dolmen Nanostructure Using Photoemission Electron Microscopy[J]. Chin. Phys. Lett., 2016, 33(11): 077803
[7] PENG Xiao-Niu, WANG Ya-Lan, WANG Hao. The Evolution of the Extinction and Growth Mechanism of the Silver Nanoplates[J]. Chin. Phys. Lett., 2015, 32(11): 077803
[8] LI Yong, LING Hong, GAO Lei, SONG Yue-Li, TIAN Ming-Li, ZHOU Feng-Qun. Synthesis, Structure and Optical Properties of CdO Nanocrystals Directly Grown on Cd Foil[J]. Chin. Phys. Lett., 2015, 32(10): 077803
[9] ZHANG Yong, XIE Long-Zhen, LI Hai-Rong, WANG Peng, LIU Su, PENG Ying-Quan, ZHANG Miao. Facile Synthesis of Rose-Like NiO Nanoparticles and Their Ethanol Gas-Sensing Property[J]. Chin. Phys. Lett., 2015, 32(09): 077803
[10] QIN Jiang, JI Bo-Yu, HAO Zuo-Qiang, LIN Jing-Quan. Probing of Ultrafast Plasmon Dynamics on Gold Bowtie Nanostructure Using Photoemission Electron Microscopy[J]. Chin. Phys. Lett., 2015, 32(06): 077803
[11] WANG Xiao-Bo, LI Yong, YAN Ling-Ling, LI Xin-Jian. Temperature-Dependent Photoluminescence from GaN/Si Nanoporous Pillar Array[J]. Chin. Phys. Lett., 2015, 32(5): 077803
[12] WANG Ya-Lan, CHENG Zi-Qiang, MA Liang, PENG Xiao-Niu, HAO Zhong-Hua, WANG Qu-Quan. Power-Dependent Luminescence of CdSe/ZnS Nanocrystal Assembled Layer-by-Layer on a Silver Nanorod Array[J]. Chin. Phys. Lett., 2015, 32(03): 077803
[13] Meisam Omidi, Gh. Amoabediny, F. Yazdian, M. Habibi-Rezaei. Protein Based Localized Surface Plasmon Resonance Gas Sensing[J]. Chin. Phys. Lett., 2015, 32(01): 077803
[14] LI Yong, WANG Xiao-Bo, ZHAO Jin-Chao, LI Xin-Jian. Paths for the Non-radiative Recombination Occurring in CdS:CdO/Si Multi-Interface Nanoheterostructure Array[J]. Chin. Phys. Lett., 2014, 31(07): 077803
[15] LI Yong, WANG Xiao-Bo, FAN Zhi-Qiang, LI Xin-Jian. Temperature-Dependent Photoluminescence of Silicon Nanoporous Pillar Array[J]. Chin. Phys. Lett., 2014, 31(04): 077803
Viewed
Full text


Abstract