Chin. Phys. Lett.  2014, Vol. 31 Issue (07): 077203    DOI: 10.1088/0256-307X/31/7/077203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Transport and Capacitance Properties of Charge Density Wave in Few-Layer 2H–TaS2 Devices
CAO Yu-Fei1, CAI Kai-Ming1, LI Li-Jun2, LU Wen-Jian2, SUN Yu-Ping2, WANG Kai-You1**
1The State Key Laboratory of Superlattices and Microstructure, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031
Cite this article:   
CAO Yu-Fei, CAI Kai-Ming, LI Li-Jun et al  2014 Chin. Phys. Lett. 31 077203
Download: PDF(862KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We carefully investigate the transport and capacitance properties of few layer charge density wave (CDW) 2H–TaS2 devices. The CDW transition temperature and the threshold voltage vary from device to device, which is attributed to the interlayer interaction and inhomogeneous local defects of these micro-devices based on few layer 2H–TaS2 flakes. The nonlinear rather than linear current voltage characteristic of 2H–TaS2 devices is observed in our experiment at low temperature. The temperature dependence of the relative threshold voltage can be scaled to (1?T/Tr)0.5+δ with δ=0.08 for the different measured devices with the presence of the CDWs. The conductance-voltage and capacity-voltage measurements are performed simultaneously. At very low ac active voltage, we find that the hysteresis loops of these two measurements exactly match each other. Our results point out that the capacity-voltage measurements can also be used to define the threshold depinning voltage of the CDW, which gives us a new method to investigate the CDWs.
Published: 30 June 2014
PACS:  72.80.Ga (Transition-metal compounds)  
  74.20.Fg (BCS theory and its development)  
  71.45.Lr (Charge-density-wave systems)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  73.21.Ac (Multilayers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/7/077203       OR      https://cpl.iphy.ac.cn/Y2014/V31/I07/077203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAO Yu-Fei
CAI Kai-Ming
LI Li-Jun
LU Wen-Jian
SUN Yu-Ping
WANG Kai-You
[1] Gabovich A M et al 2002 Phys. Rep. 367 583
[2] Di Salvo F J et al 1976 Phys. Rev. B 14 4321
[3] Holt M et al 2001 Phys. Rev. Lett. 86 3799
[4] Peng Z et al 2008 Chin. Phys. Lett. 25 3742
[5] Liu X J et al 2004 Chin. Phys. Lett. 21 179
[6] Mattheiss L F 1973 Phys. Rev. B 8 3719
[7] Harper J M E et al 1977 Phys. Rev. B 15 2943
[8] Whangbo M H et al 1992 J. Am. Chem. Soc. 114 9587
[9] Grüner G 1988 Rev. Mod. Phys. 60 1129
[10] Adelman T L et al 1995 Phys. Rev. Lett. 74 5264
[11] Thompson A H et al 1972 Phys. Rev. B 5 2811
[12] Hu W Z et al 2007 Phys. Rev. B 76 045103
[13] Ayari A et al 2007 J. Appl. Phys. 101 014507
[14] Novoselov K S et al 2005 Proc. Natl. Acad. Sci. USA 102 10451
[15] Dordevic S V et al 2001 Phys. Rev. B 64 161103(R)
[16] Dordevic S V et al 2003 Eur. Phys. J. B 33 15
[17] Kunchur M N and Poon S J 1991 Phys. Rev. B 43 2916
[18] Li L J et al 2010 Physica C 470 313
[19] Li H et al 2013 Small 9 1974
[20] Kobayashi H et al 2009 J. Phys.: Conf. Ser. 150 032045
[21] Splendiani A et al 2010 Nano Lett. 10 1271
[22] Biel B et al 2005 Phys. Rev. Lett. 95 266801
[23] Wilson J A et al 1975 Adv. Phys. 24 117
[24] Hatta S et al 2005 Phys. Rev. B 71 041401(R)
[25] Lee W S et al 2007 Nature 450 81
[26] Kriener M et al 2011 Phys. Rev. Lett. 106 127004
Related articles from Frontiers Journals
[1] Guangqiang Wang, Guoqing Chang, Huibin Zhou, Wenlong Ma, Hsin Lin, M. Zahid Hasan, Su-Yang Xu, and Shuang Jia. Field-Induced Metal–Insulator Transition in $\beta$-EuP$_3$[J]. Chin. Phys. Lett., 2020, 37(10): 077203
[2] Yanjing Tang, Xianxi Yu, Shaobo Liu, Anran Yu, Jiajun Qin, Ruichen Yi, Yuan Pei, Chunqin Zhu, Xiaoyuan Hou. Hole Injection Enhancement of MoO$_{3}$/NPB/Al Composite Anode[J]. Chin. Phys. Lett., 2019, 36(12): 077203
[3] Hong-Jun Wang, Yuan-Yuan Zhu, Jing Zhou. Electron Transport Behavior of Multiferroic Perovskite BiMnO$_{3}$ Prepared by Co-Precipitation Method[J]. Chin. Phys. Lett., 2018, 35(2): 077203
[4] Yan Li, Zhao Sun, Jia-Wei Cai, Jian-Ping Sun, Bo-Sen Wang, Zhi-Ying Zhao, Y. Uwatoko, Jia-Qiang Yan, Jin-Guang Cheng. Pressure-Induced Charge-Order Melting and Reentrant Charge Carrier Localization in the Mixed-Valent Pb$_{3}$Rh$_{7}$O$_{15}$[J]. Chin. Phys. Lett., 2017, 34(8): 077203
[5] Xu-Bo Lai, Yu-Hang Wang, Xiao-Lan Shi, Dong-Yong Li, Bo-Yang Liu, Rong-Ming Wang, Liu-Wan Zhang. Bipolar Resistive Switching in Epitaxial Mn$_{3}$O$_{4}$ Thin Films on Nb-Doped SrTiO$_{3}$ Substrates[J]. Chin. Phys. Lett., 2016, 33(06): 077203
[6] Wei-Cheng Lee, Congjun Wu. Microscopic Theory of the Thermodynamic Properties of Sr$_3$Ru$_2$O$_7$[J]. Chin. Phys. Lett., 2016, 33(03): 077203
[7] FAN Guo-Zhi, CHEN Rong-Yan, WANG Nan-Lin, LUO Jian-Lin. 31P Nuclear Magnetic Resonance of Charge-Density-Wave Transition in a Single Crystal of RuP[J]. Chin. Phys. Lett., 2015, 32(07): 077203
[8] CHEN Yong-Chang, HUO Miao, LIU Yang, CHEN Tong, LENG Cheng-Cai, LI Qiang, SUN Zhao-Lin, SONG Li-Juan. Structural, Electrical, and Lithium Ion Dynamics of Li2MnO3 from Density Functional Theory[J]. Chin. Phys. Lett., 2015, 32(01): 077203
[9] ZHU Yuan-Yuan, WANG Rong-Juan, WANG Li, LIU Yong, XIONG Rui, SHI Jing, AN Li-Heng, SUN Duo-Hua. Transport Behavior in Spinel Oxide MgTi2O4[J]. Chin. Phys. Lett., 2014, 31(09): 077203
[10] ZHAO Geng, CHENG Xiao-Man, **, TIAN Hai-Jun, DU Bo-Qun, LIANG Xiao-Yu . Improved Performance of Pentacene Organic Field-Effect Transistors by Inserting a V2O5 Metal Oxide Layer[J]. Chin. Phys. Lett., 2011, 28(12): 077203
[11] XU Jia-Xiong, YAO Ruo-He*, LIU Yu-Rong . Fabrication of a ZnO:Al/Amorphous-FeSi2 Heterojunction at Room Temperature[J]. Chin. Phys. Lett., 2011, 28(10): 077203
[12] LI Na, YUE Chong-Xing**, LI Xu-Xin . Neutrino-Electron Scattering and the Little Higgs Models[J]. Chin. Phys. Lett., 2011, 28(10): 077203
[13] C. K. Sumesh**, K. D. Patel, V. M. Pathak, R. Srivastav . Current Transport in Copper Schottky Contacts to a−Plane/ c−Plane n-Type MoSe2[J]. Chin. Phys. Lett., 2011, 28(8): 077203
[14] WANG Yan, LIU Qi, LV Hang-Bing, LONG Shi-Bing, ZHANG Sen, LI Ying-Tao, LIAN Wen-Tai, YANG Jian-Hong**, LIU Ming . CMOS Compatible Nonvolatile Memory Devices Based on SiO2/Cu/SiO2 Multilayer Films[J]. Chin. Phys. Lett., 2011, 28(7): 077203
[15] YUE Song, DU Juan, ZHANG Yuan, ZHANG Yu-Heng. Metal-Insulator Transition in CuIr2(S1-xTex)4[J]. Chin. Phys. Lett., 2009, 26(11): 077203
Viewed
Full text


Abstract