Chin. Phys. Lett.  2014, Vol. 31 Issue (07): 077202    DOI: 10.1088/0256-307X/31/7/077202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Growth of a-Plane InN Film and Its THz Emission
WANG Guang-Bing1, ZHAO Guo-Zhong3, ZHENG Xian-Tong1, WANG Ping1, CHEN Guang1, RONG Xin1, WANG Xin-Qiang1,2**
1State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871
2Collaborative Innovation Center of Quantum Matter, Beijing 100871
3Department of Physics, Capital Normal University, Beijing 100048
Cite this article:   
WANG Guang-Bing, ZHAO Guo-Zhong, ZHENG Xian-Tong et al  2014 Chin. Phys. Lett. 31 077202
Download: PDF(759KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the growth of a-plane InN on an r-plane sapphire substrate by plasma-assisted molecular-beam epitaxy. It is found that the a-plane InN is successfully grown by using a GaN buffer layer, which has been confirmed by reflection high-energy electron diffraction, x-ray diffraction and Raman scattering measurements. The Hall effect measurement shows that the electron mobility of the as-grown a-plane InN is about 406 cm2/V?s with a residual electron concentration of 5.7×1018 cm?3. THz emission from the a-plane InN film is also studied, where it is found that the emission amplitude is inversely proportional to the conductivity.
Published: 30 June 2014
PACS:  72.80.Ey (III-V and II-VI semiconductors)  
  73.61.Ey (III-V semiconductors)  
  61.05.cp (X-ray diffraction)  
  68.37.Ps (Atomic force microscopy (AFM))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/7/077202       OR      https://cpl.iphy.ac.cn/Y2014/V31/I07/077202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Guang-Bing
ZHAO Guo-Zhong
ZHENG Xian-Tong
WANG Ping
CHEN Guang
RONG Xin
WANG Xin-Qiang
[1] Wilke I 2007 Proc. SPIE 6772 67720N
[2] Ascázubi R, Wilke I, Lu H and Schaff W J 2004 Appl. Phys. Lett. 84 4810
[3] Liu K, Xu J, Yuan T and Zhang X C 2006 Phys. Rev. B 73 155330
[4] Ahn H, Ku Y P, Chuang C H, Pan C L, Lin H W, Hong Y L and Gwo S 2008 Appl. Phys. Lett. 92 102103
[5] Chern G D, Readinger E E, Shen H, Wraback M, Galllinat C S, Konlmuller G and Speck J S 2006 Appl. Phys. Lett. 89 141115
[6] Ahn H, Ku Y P, Wang Y C, Chuang C H, Gwo S and Pan C L 2007 Appl. Phys. Lett. 91 163105
[7] Cimalla V, Pradarutti B, Matthaus G, Bruckner C, Riehemann S, Notni G, Nolte S, Tunnermann A, Lebedev V and Ambacher O 2007 Phys. Status Solidi B 244 1829
[8] Wilke I, Ascazubi R, Lu H and Schaff W J 2008 Appl. Phys. Lett. 93 221113
[9] Pradarutti B, Matthaus G, Bruckner C, Riehemann S, Notni G, Nolte S, Cimalla V, Lebedev V, Ambacher O and Tunnermann A 2006 Proc. SPIE 6194 61940I
[10] Dhar S and Ghosh S 2002 Appl. Phys. Lett. 80 4519
[11] Wang X Q, Liu S T, Ma N, Feng L, Chen G, Xu F J, Tang N, Huang S, K Chen J, Zhou S Q and Shen B 2012 Appl. Phys. Express 5 015502
[12] Su T, Jia X, Zhao G, Han P, Wang Y, Li Y, Zhou B, Lu X, Xu Y, Xie D, Wu J and Chen J 2009 Spectrochim. Acta Part. A 73 884
[13] Zhang X C, Jin Y and Ma X 1992 Appl. Phys. Lett. 61 2764
[14] Wang X Q, Che S B, Ishitani Y and Yoshikawa A 2006 Jpn. J. Appl. Phys. 45 L730
[15] Hirai K A, Wu F, Gallinat C S, Metcalfe G D, Shen H, Wraback M and Speck J S 2008 Appl. Phys. Lett. 93 171902
[16] Cimalla V, Pezoldt J, Ecke G, Kosiba R, Ambacher O, Spie L, Teichert G, Lu H and Schaff W J 2003 Appl. Phys. Lett. 83 3468
[17] Ni X, Fu Y, Moon Y T, Biyikli N and Morkoc H 2006 J. Cryst. Growth 290 166
[18] Kaczmarczyk G, Kaschner A, Reich S, Hoffmann A, Thomsen C, As D J, Lima A P, Schikora D, Lischka K, Averbeck R and Riechert H 2000 Appl. Phys. Lett. 76 2122
[19] Davydov V Y, Emtsev V V, Goncharuk I N, Smirnov A N, Petrikov V D, Mamutin V V, Vekshin V A, Ivanov S V, Smirnov M B and Inushima T 1999 Appl. Phys. Lett. 75 3297
[20] Zhu X L, Guo L W, Peng M Z, Ge B H, Zhang J, Ding G J, Jia H Q, Chen H and Zhou J M 2008 J. Cryst. Growth 310 3726
[21] Lu H, Schaff W J, Eastman L F, Wu J, Walukiewicz W, Cimalla V and Ambacher O 2003 Appl. Phys. Lett. 83 1136
[22] Ajagunna A O, lliopoulos E, Tsiakatuuras G, Tsagaraki K, Androulidaki M and Georgakilas A 2010 J. Appl. Phys. 107 024506
[23] Metcalfe G D, Shen H, Wraback M, Koblmuller G, Gallinat C, Wu F and Speck J S 2010 Appl. Phys. Express 3 092201
[24] Wang X Q, Zhao G Z, Isjitani Y, Yoshikawa A and Shen B 2010 Appl. Phys. Lett. 96 061907
Related articles from Frontiers Journals
[1] Yongyong You , Tianran Jiang , and Tianshu Lai. A Simple Time-Resolved Optical Measurement of Diffusion Transport Dynamics of Photoexcited Carriers and Its Demonstration in Intrinsic GaAs Films[J]. Chin. Phys. Lett., 2020, 37(8): 077202
[2] Li Zhang, Jin-Feng Zhang, Wei-Hang Zhang, Tao Zhang, Lei Xu, Jin-Cheng Zhang, Yue Hao. Robust Performance of AlGaN-Channel Metal-Insulator-Semiconductor High-Electron-Mobility Transistors at High Temperatures[J]. Chin. Phys. Lett., 2017, 34(12): 077202
[3] LI Xiang-Dong, ZHANG Jin-Cheng, GUO Zhen-Xing, JIANG Hai-Qing, ZOU Yu, ZHANG Wei-Hang, HE Yun-Long, JIANG Ren-Yuan, ZHAO Sheng-Lei, HAO Yue. Al0.30Ga0.70N/GaN/Al0.07Ga0.93N Double Heterostructure High Electron Mobility Transistors with a Record Saturation Drain Current of 1050 mA/mm[J]. Chin. Phys. Lett., 2015, 32(11): 077202
[4] LI Xiang-Dong, ZHANG Jin-Cheng, ZOU Yu, MA Xue-Zhi, LIU Chang, ZHANG Wei-Hang, WEN Hui-Juan, HAO Yue. AlGaN Channel High Electron Mobility Transistors with an AlxGa1?xN/GaN Composite Buffer Layer[J]. Chin. Phys. Lett., 2015, 32(07): 077202
[5] FANG Yu-Long, FENG Zhi-Hong, LI Cheng-Ming, SONG Xu-Bo, YIN Jia-Yun, ZHOU Xing-Ye, WANG Yuan-Gang, LV Yuan-Jie, CAI Shu-Jun. High-Temperature Performance Analysis of AlGaN/GaN Polarization Doped Field Effect Transistors Based on the Quasi-Multi-Channel Model[J]. Chin. Phys. Lett., 2015, 32(03): 077202
[6] JI Xiao-Fan, XU Zheng, CAO Shuo, QIU Kang-Sheng, TANG Jing, ZHANG Xi-Tian, XU Xiu-Lai. Single-ZnO-Nanobelt-Based Single-Electron Transistors[J]. Chin. Phys. Lett., 2014, 31(06): 077202
[7] YU Xin-Xin, NI Jin-Yu, LI Zhong-Hui, KONG Cen, ZHOU Jian-Jun, DONG Xun, PAN Lei, KONG Yue-Chan, CHEN Tang-Sheng. AlGaN/GaN HEMTs on 4-Inch Silicon Substrates in the Presence of 2.7-µm -Thick Epilayers with the Maximum Off-State Breakdown Voltage of 500 V[J]. Chin. Phys. Lett., 2014, 31(03): 077202
[8] HA Wei, ZHANG Jin-Cheng, ZHAO Sheng-Lei, GE Sha-Sha, WEN Hui-Juan, ZHANG Chun-Fu, MA Xiao-Hua, HAO Yue. AlGaN Channel High Electron Mobility Transistors with Ultra-Low Drain-Induced-Barrier-Lowering Coefficient[J]. Chin. Phys. Lett., 2013, 30(12): 077202
[9] WEI Ling, ZHANG Wei-Feng. A Win-Win Effect for Both the Ferromagnetism and the Dopability of p-Type Doping in ZnO:(Cu+N)[J]. Chin. Phys. Lett., 2013, 30(8): 077202
[10] WANG Zhi-Gang, CHEN Wan-Jun, ZHANG Bo, LI Zhao-Ji. A Novel Controllable Hybrid-Anode AlGaN/GaN Field-Effect Rectifier with Low Operation Voltage[J]. Chin. Phys. Lett., 2012, 29(10): 077202
[11] SHI Wei, TAI Qiang, XIA Xian-Hai, YI Ming-Dong, XIE Ling-Hai, FAN Qu-Li, WANG Lian-Hui, WEI Ang, and HUANG Wei. Unipolar Resistive Switching Effects Based on Al/ZnO/P++-Si Diodes for Nonvolatile Memory Applications[J]. Chin. Phys. Lett., 2012, 29(8): 077202
[12] WANG Jian-Hui, WANG Xin-Hua, PANG Lei, CHEN Xiao-Juan, JIN Zhi, and LIU Xin-Yu. Determination of Channel Temperature in AlGaN/GaN HEMTs by Pulsed IV Characteristics[J]. Chin. Phys. Lett., 2012, 29(8): 077202
[13] YAN Da-Wei, ZHU Zhao-Min, CHENG Jian-Min, GU Xiao-Feng, and LU Hai. Forward Current Transport Mechanism and Schottky Barrier Characteristics of a Ni/Au Contact on n-GaN[J]. Chin. Phys. Lett., 2012, 29(8): 077202
[14] CAO Xiao-Long, WANG Yu-Ye, XU De-Gang, **, ZHONG Kai, LI Jing-Hui, LI Zhong-Yang, ZHU Neng-Nian, YAO Jian-Quan,. THz-Wave Difference Frequency Generation by Phase-Matching in GaAs/AlxGa1−xAs Asymmetric Quantum Well[J]. Chin. Phys. Lett., 2012, 29(1): 077202
[15] LIU Sheng-Hou, CAI Yong**, GONG Ru-Min, WANG Jin-Yan, ZENG Chun-Hong, SHI Wen-Hua, FENG Zhi-Hong, WANG Jing-Jing, YIN Jia-Yun, Cheng P. Wen, QIN Hua, ZHANG Bao-Shun . Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors Using a Nano-Channel Array Structure[J]. Chin. Phys. Lett., 2011, 28(7): 077202
Viewed
Full text


Abstract