Chin. Phys. Lett.  2014, Vol. 31 Issue (07): 076801    DOI: 10.1088/0256-307X/31/7/076801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Imaginary Part of the Surface Tension of Water
XIONG Xiao-Min1,2,3**, CHEN Lan1, ZUO Wen-Long1, LI Long-Fei1, YANG Yue-Bin4, PANG Zhi-Yong1, ZHANG Jin-Xiu1
1School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275
2State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou 510275
3Guangdong Provincial Key Laboratory of Photovoltaics Technologies, Guangzhou 510006
4School of Information Science and Technology, Sun Yat-Sen University, Guangzhou 510006
Cite this article:   
XIONG Xiao-Min, CHEN Lan, ZUO Wen-Long et al  2014 Chin. Phys. Lett. 31 076801
Download: PDF(565KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract
We report a direct measurement of the imaginary part of the surface tension of water through a dynamic scheme using a thin vertical glass fiber of diameter of 3 μm with one end glued onto a cantilever beam and the other end touching a water-air interface. The frequency dependence of the dissipation factor experienced by the glass fiber is exactly calculated through measuring the phase delay with various frequencies when the glass fiber is forced to oscillate vertically. We find the same intercept at the dissipation factor axis for different frequency dependences of the dissipation factor for different depths by which the glass fiber is dipped into water. This nonzero dissipation factor at zero frequency presents direct evidence of the existence of the imaginary part of surface tension of water and yields a complex surface tension of water σ=0.073 + i(0.017 ± 0.002) N/m at room temperature.
Published: 30 June 2014
PACS:  68.03.Cd (Surface tension and related phenomena)  
  83.60.Bc (Linear viscoelasticity)  
  68.03.Kn (Dynamics (capillary waves))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/7/076801       OR      https://cpl.iphy.ac.cn/Y2014/V31/I07/076801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIONG Xiao-Min
CHEN Lan
ZUO Wen-Long
LI Long-Fei
YANG Yue-Bin
PANG Zhi-Yong
ZHANG Jin-Xiu

[1] Superfine R et al 1993 Phys. Rev. Lett. 70 2313
[2] Fletcher N H 1962 Philos. Mag. 7 255
[3] Nowick A S and Berry B S 1972 Anelastic Relaxation in Crystalline Solids (New York: Academic Press) vol 1
[4] Earnshaw J C 1981 Nature 292 138
[5] Holmberg K 2002 Handbook of Applied Surface and Colloid Chemistry (New York: Wiley) vol 1 and 2
[6] Wang H P, Chang J, Luo B C and Wei B B 2007 Chin. Phys. Lett. 24 504
[7] de Gennes P G et al 2004 Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (New York: Springer)
[8] de Gennes P G 1985 Rev. Mod. Phys. 57 827
[9] Ma H, Jimenez J and Rajagopalan R 2000 Langmuir 16 2254
[10] Rajagopalan R 2000 Colloids Surfaces A: Physicochem. Engin. Aspects 174 253
[11] Xiong X M, Guo S, Xu Z L, Sheng P and Tong P E 2009 Phys. Rev. E 80 061604

Related articles from Frontiers Journals
[1] Chenhao Li, Hongtao Liang, Yang Yang, Zhiyong Yu, Xin Zhang, Xiangming Ma, Wenliang Lu, Zhenrong Sun, and Ya Cheng. Ultrafast Modulation of the Molten Metal Surface Tension under Femtosecond Laser Irradiation[J]. Chin. Phys. Lett., 2022, 39(7): 076801
[2] Yan Cen, Chuanshan Tian. Surface Tension and Electrostriction in a Suspended Bridge of Dielectric Liquid[J]. Chin. Phys. Lett., 2018, 35(10): 076801
[3] Zheng Wei, Zai-Ran Wang, Yan Sun, Xiang-Hong Xu. Dissipation Energy in Tapping-Mode Atomic Force Microscopes Caused by Liquid Bridge[J]. Chin. Phys. Lett., 2018, 35(1): 076801
[4] Le-Feng Wang, Ben-Song Huang, Yuan-Zhe He, Wei-Bin Rong, Li-Ning Sun. Simulation and Experiments on the Capillary Force between a Circular Disk and a Parallel Substrate[J]. Chin. Phys. Lett., 2017, 34(5): 076801
[5] WANG Le-Feng, LIU Lu, XU Hui-Chao, RONG Wei-Bin, SUN Li-Ning. Forces Acting on Submillimeter Spheres at the Air–Water Interface[J]. Chin. Phys. Lett., 2015, 32(11): 076801
[6] LIU Shuang, LIU Zhan-Wei, SHI Wen-Xiong. A Source for the Excellent Floating Ability of a Water Strider[J]. Chin. Phys. Lett., 2014, 31(10): 076801
[7] GU Fang, ZHANG Jia-Hong**, XU Lin-Hua, LIU Qing-Quan, LI Min . Influence of Surface Effects on the Elastic Properties of Silicon Nanowires with Different Cross Sections[J]. Chin. Phys. Lett., 2011, 28(10): 076801
[8] SHEN Chang-Le, XIE Wen-Jun, WEI Bing-Bo. Non-Axisymmetric Oscillation of Acoustically Levitated Water Drops at Specific Frequencies[J]. Chin. Phys. Lett., 2010, 27(7): 076801
[9] WANG Le-Feng, RONG Wei-Bin, SUN Li-Ning, CHEN Li-Guo, SHAO Bing. Capillary Forces between Submillimeter Spheres and Flat Surfaces at Constant Liquid Volumes[J]. Chin. Phys. Lett., 2009, 26(12): 076801
[10] LIU Jian-Lin. Analogies between a Meniscus and a Cantilever[J]. Chin. Phys. Lett., 2009, 26(11): 076801
[11] HONG Zhen-Yu, XIE Wen-Jun, WEI Bing-Bo. Ultrasonic Vibration Suspends Large Pendant Drops[J]. Chin. Phys. Lett., 2009, 26(5): 076801
[12] SUN Li-Ning, WANG Le-Feng, RONG Wei-Bin. Capillary Interactions between a Probe Tip and a Nanoparticle[J]. Chin. Phys. Lett., 2008, 25(5): 076801
[13] CHEN Yan-Yan, , YI Hou-Hui, LI Hua-Bing,. Boundary Slip and Surface Interaction: A Lattice Boltzmann Simulation[J]. Chin. Phys. Lett., 2008, 25(1): 076801
[14] LIU Jian-Lin, XIA Re, LI Bing-Wei, FENG Xi-Qiao. Directional Motion of Droplets in a Conical Tube or on a Conical Fibre[J]. Chin. Phys. Lett., 2007, 24(11): 076801
[15] LIU Jian-Lin, FENG Xi-Qiao. Capillary Adhesion of Microbeams: Finite Deformation Analysis[J]. Chin. Phys. Lett., 2007, 24(8): 076801
Viewed
Full text


Abstract