CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
High Solubility of Hetero-Valence Ion (Cu2+) for Reducing Phase Transition and Thermal Expansion of ZrV1.6P0.4O7 |
YUAN Bao-He1,2, YUAN Huan-Li1, SONG Wen-Bo1, LIU Xian-Sheng1, CHENG Yong-Guang1, CHAO Ming-Ju1, LIANG Er-Jun1** |
1School of Physical Science & Engineering and Key Laboratory of Materials Physics (Ministry of Education), Zhengzhou University, Zhengzhou 450052 2North China University of Water Resources and Electric Power, Zhengzhou 450011
|
|
Cite this article: |
YUAN Bao-He, YUAN Huan-Li, SONG Wen-Bo et al 2014 Chin. Phys. Lett. 31 076501 |
|
|
Abstract Large thermal expansion at room temperature and high phase transition temperature of ZrV2O7 limit its practical applications and are reduced by the high solubility of hetero-valence ion (Cu2+) on the basis of an equal-valence substitution of P5+ for V5+. The temperature-dependent Raman spectra show that Zr0.9Cu0.1V1.6P0.4O6.9 maintains a normal parent cubic structure till 173 K and transforms to a 3×3×3 cubic superstructure below 173 K. Temperature dependent x-ray diffraction patterns of Zr0.9Cu0.1V1.6P0.4O6.9 show near zero and negative thermal expansion. High solubility of lower valence Cu2+ relates to an equal-valence substitution of smaller P5+ for V5+, which extends the bond angle of V(P)–O–V in ZrV1.6P0.4O7 close to 180°. The change of microstructure is considered to be responsible for reduced phase transition temperature and thermal expansion.
|
|
Published: 30 June 2014
|
|
PACS: |
65.40.De
|
(Thermal expansion; thermomechanical effects)
|
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
|
|
|
|
[1] Mary T A, Evans J S O, Vogt T and Sleight A W 1996 Science 272 90 [2] Evans J S O, Mary T A and Sleight A W 1997 J. Solid State Chem. 133 580 [3] Evans J S O, Mary T A and Sleight A W 1997 Physica B 241 311 [4] Evans J S O, David W I F and Sleight A W 1999 Acta Crystallogr. B 55 333 [5] Evans J S O, Hu Z, Jorgensen J D, Argyriou D N, Short S and Sleight A W 1997 Science 275 61 [6] Jorgensen J D, Hu Z, Teslic S, Argyriou D N, Short S, Evans J S O and Sleight A W 1999 Phys. Rev. B 59 215 [7] Liang E J, Huo H L, Wang J P and Chao M J 2008 J. Phys. Chem. C 112 6577 [8] Niphadkar P S, Bhange D S, Selvaraj K and Joshi P N 2012 Chem. Phys. Lett. 548 51 [9] Li Z Y, Song W B and Liang E J 2011 J. Phys. Chem. C 115 17806 [10] Li Q J, Yuan B H, Song W B, Liang E J and Yuan B 2012 Chin. Phys. B 21 046501 [11] Song W B, Liang E J, Liu X S, Li Z Y, Yuan B H and Wang J Q 2013 Chin. Phys. Lett. 30 126502 [12] Korthuis V, Khosrovani N and Sleight A W 1995 J. Ser. Chem. Mater. 7 412 [13] Khosrovani N, Korthuis V and Sleight A W 1996 Inorg. Chem. 35 485 [14] Khosrovani N and Sleight A W 1997 J. Solid State Chem. 132 355 [15] Withers R L, Evans J S O, Hanson J and Sleight A W 1998 J. Solid State Chem. 137 161 [16] Withers R L, Tabira Y, Evans J S O, King I J and Sleight A W 2001 J. Solid State Chem. 157 186 [17] Yanase I, Kojima T and Kobayashi H 2011 Solid State Commun. 151 595 [18] Yamamura Y, Horikoshi A, Yasuzuka S, Saitoh H and Saito K 2011 Dalton Trans. 40 2242 [19] Petruska E A, Muthu D V S, Carlson S, Krogh Andersen A M, Ouyang L and Kyuger M B 2010 Solid State Commun. 150 235 [20] Hemamala U L C, El-Ghussein F and Muthu D V S 2007 Solid State Commun. 141 680 [21] Yuan H L, Yuan B H, Li F and Liang E J 2012 Acta Phys. Sin. 61 226502 (in Chinese) [22] Ofer R, Keren A, Chmaissem O and Amato A 2008 Phys. Rev. B 78 140508 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|