CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Interplay between External Strain and Oxygen Vacancies on Raman Spectra of SnO2 |
LI Ting-Hui1**, LI Hai-Tao2, PAN Jiang-Hong1 |
1College of Physical and Technology, Guangxi Normal University, Guilin 541004 2Department of Physics, Hebei Normal University for Nationalities, Chengde 067000
|
|
Cite this article: |
LI Ting-Hui, LI Hai-Tao, PAN Jiang-Hong 2014 Chin. Phys. Lett. 31 076201 |
|
|
Abstract Comprehensive first-principle calculations on strained SnO2 crystal structure indicate that the formation energy of different types of oxygen vacancies depends on the external strain. Many novel Raman modes can be observed, their intensities and positions are strongly dependent on applied stain, which can be ascribed to crystal symmetry destruction by oxygen vacancies. Applied strain can compress/stretch distances between Sn and O atoms; therefore, Sn–O band vibration frequencies can be adjusted accordingly. Our calculated results disclose that the Raman spectra of SnO2 crystal structure with different types of oxygen vacancies are obviously different, which can be used to identify the oxygen vacancy types in strained SnO2 crystal structures.
|
|
Published: 30 June 2014
|
|
|
|
|
|
[1] Brovelli S, Chiodini A, Lauria A, Meinardi F and Palaeri A 2006 Phys. Rev. B 73 073406 [2] Killic C and Zunger A 2002 Phys. Rev. Lett. 88 095501 [3] Kucheyev S O, Baumann T F, Sterne P A, Wang Y M, Buuren T, Hamza A V, Terminello L J and Willey T M 2005 Phys. Rev. B 72 035404 [4] Idota Y, Kubota T, Matsufuji A, Maekawa Y and Miyasaka T 1997 Science 276 1395 [5] Asahi R, Morijawa T, Ohwaki T, Aoki K and Taga Y 2001 Science 293 269 [6] Chen Y J, Nie L, Xue X Y, Wang Y G and Wang T H 2006 Appl. Phys. Lett. 88 083105 [7] Liu L Z, Li X X, Wu X L, X T Chen and Chu P K 2011 Appl. Phys. Lett. 98 133102 [8] Chen H T, Xiong S J, Wu X L, Zhu J and Shen J C 2009 Nano Lett. 9 1926 [9] Lee E J H, Ribeiro C, Giraldi T R, Longo E, Leite E R and Varela J A 2004 Appl. Phys. Lett. 84 1745 [10] Jiang L H, Sun G Q, Zhou Z H, Sun S G, Wang Q, Yang S Y, Li H Q, Tian J, Guo J S, Zhou B and Xin Q 2005 J. Phys. Chem. B 109 8774 [11] Liu L Z, Xu J Q, Wu X L, Li T H, Shen J C and P K Chu 2013 Appl. Phys. Lett. 102 031916 [12] Liu L Z, Wu X L, Xu J Q, Li T H, Shen J C and P K Chu 2012 Appl. Phys. Lett. 100 121903 [13] Maki-Jaskari M A and Rantal T T 2002 Phys. Rev. B 65 245428 [14] Liu L Z, Wu X L, Li T H Xiong S J, Chen H T and Chu P K 2011 Appl. Phys. Lett. 99 251902 [15] Dieguez A, Romano-Rodriguez A, Vila A and Morante J R 2001 J. Appl. Phys. 90 1550 [16] Das S, Kar S and Chaudhuri S 2006 J. Appl. Phys. 99 114303 [17] Zhang H, Liu Y L, Zhu K, Siu G G, Xiong Y H and Xiong C S 1998 J. Phys.: Condens. Matter 10 11121 [18] Li T H, Liu L Z, Li X X, Wu X L, Chen H T and Chu P K 2011 Opt. Lett. 36 4296 [19] Liu L Z, Li T H, Wu X L, Shen J C and Chu P K 2012 J. Raman Spectrosc. 43 1423 [20] Hirata T, Ishioka K, Kitajima M and Doi H 1996 Phys. Rev. B 53 8442 [21] Liu D C and Liu F 2007 Nano Lett. 7 3046 [22] Hamann D R, Schluter M and Chiang C 1979 Phys. Rev. Lett. 43 1494 [23] Perdew P J, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [24] Chen Z W, Lai J K L and Shek C H 2004 Phys. Rev. B 70 165314 [25] Liu L Z, Wu X L, Shen J C, Li T H, Gao F and Chu P 2010 Chem. Commun. 46 5539 [26] Abello L, Bochu B, Gaskov A, Koudryavtseva, Lucazeau G and Roumyantsrva M 1998 J. Solid State Chem. 135 78 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|