Chin. Phys. Lett.  2014, Vol. 31 Issue (07): 074210    DOI: 10.1088/0256-307X/31/7/074210
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Novel Dynamics of a Vortex in Three-Dimensional Dissipative Media with an Umbrella-Shaped Potential
LIU Yun-Feng, LIU Bin**, HE Xing-Dao, LI Shu-Jing
Key Laboratory of Nondestructive Test (Ministry of Education), Nanchang Hangkong University, Nanchang 330063
Cite this article:   
LIU Yun-Feng, LIU Bin, HE Xing-Dao et al  2014 Chin. Phys. Lett. 31 074210
Download: PDF(1225KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report the novel dynamic of 3D dissipative vortices supported by an umbrella-shaped potential (USP) in the 3D complex Ginzburg–Landau (CGL) equation with the cubic-quintic nonlinearity. The stable solution of vortices with intrinsic vorticity S=1 and 2 are obtained in the 3D CGL equation. An appropriate USP forces the vortices continuously to throw out fundamental 3D solitons (light bullets) along the folding umbrella. The dynamic regions of the strength of the potential with the changing number of folding umbrella are analyzed, and the rate of throwing increases with the strength of the potential. A weak potential cannot provide vortices with enough force. Then, the vortices will be stretched into polygons. However, a strong potential will destroy the vortices.
Published: 30 June 2014
PACS:  42.65.Tg (Optical solitons; nonlinear guided waves)  
  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/7/074210       OR      https://cpl.iphy.ac.cn/Y2014/V31/I07/074210
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Yun-Feng
LIU Bin
HE Xing-Dao
LI Shu-Jing
[1] Kivshar Y S and Agrawal G P 2003 Optical Solitons: From Fibers to Photonic Crystals (New York: Academic Press)
[2] Malomed B A, Mihalache D, Wise F and Torner L 2005 J. Opt. B Quantum SemiClass. Opt. 7 R53
[3] Minardi S, Eilenberger F, Kartashov Y V, Szameit A, R?pke U, Kobelke J, Schuster K, Bartelt H, Nolte S, Torner L, Lederer F, Tünnermann A and Pertsch T 2010 Phys. Rev. Lett. 105 263901
[4] Eilenberger F, Minardi S, Szameit A, R?pke U, Kobelke J, Schuster K, Bartelt H, Nolte S, Torner L, Lederer F, Tünnermann A and Pertsch T 2011 Phys. Rev. A 84 013836
[5] Wu Y and Deng L 2004 Opt. Lett. 29 2064
[6] Wu Y and Yang X 2007 Appl. Phys. Lett. 91 094104
[7] Silberberg Y 1990 Opt. Lett. 15 1282
[8] Aceves A B and Angelis C D 1993 Opt. Lett. 18 110
[9] Abdollahpour D, Suntsov S, Papazoglou D G and Tzortzakis S 2010 Phys. Rev. Lett. 105 253901
[10] Chong A, Renninger W H, Christodoulides D N and Wise F W 2010 Nat. Photon. 4 103
[11] Eilenberger F, Prater K, Minardi S, Geiss R, R?pke U, Kobelke J, Schuster K, Bartelt H, Nolte S, Tünnermann A and Pertsch T 2013 Phys. Rev. X 3 041031
[12] Mihalache D 2012 Rom. J. Phys. 57 352
[13] Wu Y and Deng L 2004 Phys. Rev. Lett. 93 143904
[14] Wu Y 2005 Phys. Rev. A 71 053820
[15] López-Mariscal C and Gutiérrez-Vega J C 2009 Opt. Photon. News 20 10
[16] Aranson I S and Kramer L 2002 Rev. Mod. Phys. 74 99
[17] Rosanov N, Akhmediev N and Ankievicz A 2005 Dissipative Solitons (New York: Springer-Verlag)
[18] Malomed B A 2005 Encyclopedia of Nonlinear Science (New York: Routledge)
[19] Akhmediev N N, Ankiewicz A and Soto-Crespo J M 1998 J. Opt. Soc. Am. B 15 515
[20] Ankiewicz A, Devine N, Akhmediev N and Soto-Crespo J M 2008 Phys. Rev. A 77 033840
[21] Crasovan L C, Malomed B A and Mihalache D 2000 Phys. Rev. E 63 016605
[22] Desyatnikov A, Maimistov A and Malomed B A 2000 Phys. Rev. E 61 3107
[23] Crasovan L C, Malomed B A and Mihalache D 2001 Phys. Lett. A 289 59
[24] Soto-Crespo J M, Akhmediev N, Mejia-Cortés C and Devine N 2009 Opt. Express 17 4236
[25] Skryabin D V and Vladimirov A G 2002 Phys. Rev. Lett. 89 044101
[26] Soto-Crespo J M, Grelu P and Akhmediev N 2006 Opt. Express 14 4013
[27] Mihalache D, Mazilu D, Lederer F, Leblond H and Malomed B A 2007 Phys. Rev. A 75 033811
[28] Kamagate A, Grelu P, Tchofo-Dinda P, Soto-Crespo J M and Akhmediev N 2009 Phys. Rev. E 79 026609
[29] Mihalache D, Mazilu D, Lederer F, Leblond H and Malomed B A 2008 Phys. Rev. E 78 056601
[30] Mihalache D, Mazilu D, Lederer F, Leblond H and Malomed B A 2008 Phys. Rev. A 77 033817
[31] Liu B, He X D and Li S J 2011 Phys. Rev. E 84 056607
[32] Mihalache D, Mazilu D, Lederer F, Kartashov Y V, L Crasovan C, Torner L and Malomed B A 2006 Phys. Rev. Lett. 97 073904
[33] Leblond H, Malomed B A and Mihalache D 2009 Phys. Rev. A 80 033835
[34] Sakaguchi H and Malomed B A 2009 Phys. Rev. E 80 026606
[35] He Y J, Malomed B A, Mihalache D, Liu B, Huang H C, Yang H and Wang H Z 2009 Opt. Lett. 34 2976
[36] Liu B, He Y J, Malomed B A, Wang X S, Kevrekidis P G, Wang T B, Leng F C, Qiu Z R and Wang H Z 2010 Opt. Lett. 35 1974
[37] Cleff C, Gütlich B and Denz C 2008 Phys. Rev. Lett. 100 233902
[38] Szameit A, Burghoff J, Pertsch T, Nolte S, Tünnermann A and Lederer F 2006 Opt. Express 14 6055
[39] Lega J, Moloney J V and Newell A C 1994 Phys. Rev. Lett. 73 2978
Related articles from Frontiers Journals
[1] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 074210
[2] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 074210
[3] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 074210
[4] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 074210
[5] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 074210
[6] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 074210
[7] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 074210
[8] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 074210
[9] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 074210
[10] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 074210
[11] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 074210
[12] Chun-Yu Jia, Zhao-Xin Liang. Dark Soliton of Polariton Condensates under Nonresonant $\mathcal{P}\mathcal{T}$-Symmetric Pumping[J]. Chin. Phys. Lett., 2020, 37(4): 074210
[13] Hui Li, S. Y. Lou. Multiple Soliton Solutions of Alice–Bob Boussinesq Equations[J]. Chin. Phys. Lett., 2019, 36(5): 074210
[14] Wei Qi, Hai-Feng Li, Zhao-Xin Liang. Variational Approach to Study $\mathcal{PT}$-Symmetric Solitons in a Bose–Einstein Condensate with Non-locality of Interactions[J]. Chin. Phys. Lett., 2019, 36(4): 074210
[15] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 074210
Viewed
Full text


Abstract