FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
A Graphene-Based Passively Q-Switched Ho:YAG Laser |
YAO Bao-Quan, CUI Zheng, DUAN Xiao-Ming**, SHEN Ying-Jie, WANG Ji, DU Yan-Qiu |
National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001
|
|
Cite this article: |
YAO Bao-Quan, CUI Zheng, DUAN Xiao-Ming et al 2014 Chin. Phys. Lett. 31 074204 |
|
|
Abstract A 2.09-μm in-band pumped passively Q-switched Ho:YAG laser is demonstrated. Single layer graphene deposited on a quartz substrate is used as the saturable absorber for the Q-switched operation. The minimum pulse width of 2.11 μs is obtained at an average output power of 100 mW, corresponding to a pulse repetition frequency of 57.1 kHz and the pulse energy of 1.75 μJ. The beam quality factors M2 of the Q-switched laser are 1.18 and 1.22 in the horizontal and longitudinal direction, respectively. The optical-to-optical conversion efficiency of the passively Q-switched laser is 4.3%, which is the highest conversion efficiency in the 2 μm wavelength, to the best of our knowledge. It shows clearly that the Ho:YAG crystal is a potential gain medium in the 2 μm range for the graphene application.
|
|
Published: 30 June 2014
|
|
PACS: |
42.60.Gd
|
(Q-switching)
|
|
42.55.Rz
|
(Doped-insulator lasers and other solid state lasers)
|
|
78.67.Wj
|
(Optical properties of graphene)
|
|
|
|
|
[1] Koch G J, Barnes B W, Petros M, Beyon J Y, Amzajerdian F, Yu J, Davis R E, Ismail S, Vay S, Kavaya M J and Singh U N 2004 Appl. Opt. 43 5092 [2] Yang J L, Tang Y L and Xu J Q 2013 Photon. Res. 1 52 [3] Tsai T Y and Birnbaum M 2001 Appl. Opt. 40 6633 [4] Duan X M, Shen Y J, Dai T Y, Yao B Q and Wang Y Z 2012 Chin. Phys. Lett. 29 094202 [5] Shen Y J, Yao B Q, Duan X M, Zhu G L, Wang W, Ju Y L and Wang Y Z 2012 Opt. Lett. 37 3558 [6] Chen Z Y, Yao B Q, Du Y Q, Ju Y L, Chen M, Pan Y B and Li X L 2013 Laser Phys. Lett. 10 105001 [7] Bonaccorso F, Sun Z, Hasan T and Ferrari A C 2010 Nat. Photon. 4 611 [8] Zhang H, Tang D Y, Knize R J, Zhao L M, Bao Q L and Loh K P 2010 Appl. Phys. Lett. 96 111112 [9] Tan W D, Su C Y, Knize R J, Xie G Q, Li L J and Tang D Y 2010 Appl. Phys. Lett. 96 031106 [10] Popa D, Sun Z, Torrisi F, Hasan T, Wang F and Ferrari A C 2010 Appl. Phys. Lett. 97 203106 [11] Dawlaty J M, Shivaraman S, Chandrashekhar M, Rana F and Spencer M G 2008 Appl. Phys. Lett. 92 042116 [12] Xing G C, Guo H C, Zhang X H, Sum T C and Huan C H A 2010 Opt. Express 18 4564 [13] Bao Q L, Zhang H, Wang Y, Ni Z H, Yan Y L, Shen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077 [14] Hasan B T, Sun Z, Wang F, Bonaccorso F, Tan P H, Rozhin A G and Ferrari A C 2009 Adv. Mater. 21 3874 [15] Zhao J Q, Wang Y G, Yang P G, Ruan S C, Cheng J Q, Du G G, Yu Y Q, Zhang G L, Wei H F, Luo J and Yuen H T 2012 Chin. Phys. Lett. 29 114206 [16] Yap Y K, Huang N M, Harun S W and Ahmad H 2013 Chin. Phys. Lett. 30 024208 [17] Men S J, Liu Z J, Zhang X Y, Wang Q P, Shen H B, Bai F, Gao L, Xu X G, Wei R S and Chen X F 2013 Laser Phys. Lett. 10 035803 [18] Xu J L, Li X L, He J L, Hao X P, Yang Y, Wu Y Z, Liu S D and Zhang B T 2012 Opt. Lett. 37 2652 [19] Gao C Q, Wang R, Zhu L, Gao M W, Wang Q, Zhang Z G, Wei Z Y, Lin J J and Guo L W 2012 Opt. Lett. 37 632 [20] Zhu Z X, Wang Y, Chen H, Huang H T, Shen D Y, Zhang J and Tang D Y 2013 Laser Phys. Lett. 10 055801 [21] Wang Q, Teng H, Zou Y W, Zhang Z G, Li D H, Wang R, Gao C Q, Lin J J, Guo L W and Wei Z Y 2012 Opt. Lett. 37 395 [22] Jiang M, Ma H F, Ren Z Y, Chen X M, Long J Y, Qi M and Shen D Y 2013 Laser Phys. Lett. 10 055103 [23] Liu C, Ye C C, Luo Z Q, Cheng H H, Wu D D, Zheng Y L, Liu Z and Qu B 2013 Opt. Express 21 204 [24] Huang P L, Lin S C, Yeh C Y, Kuo H H, Huang S H, Lin G R, Li L J, Su C Y and Cheng W H 2012 Opt. Express 20 2460 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|