FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Non-Paraxial Propagation of Cylindrical Vector Vortex Beams in the Far-Field |
GUO Li-Na1**, TANG Zhi-Lie2, WANG Jie1 |
1School of Electronics and Information, Guangdong Polytechnic Normal University, Guangzhou 510665 2School of Physics and Telecommunication Engineering, Laboratory of Quantum Information Technology, South China Normal University, Guangzhou 510006
|
|
Cite this article: |
GUO Li-Na, TANG Zhi-Lie, WANG Jie 2014 Chin. Phys. Lett. 31 074101 |
|
|
Abstract On the basis of the vectorial Rayleigh diffraction integral, the analytical expressions for the electric fields of cylindrical vector vortex beams (CVVBs) with an arbitrary polarization order in the far-field are derived, which helps us investigate the far-field properties of the CVVBs in the non-paraxial and paraxial regimes. Some detailed comparisons of the non-paraxial results with the paraxial results are made, which show that the polarization order and the ratio of beam waist width to wavelength play an important role in determining the non-paraxiality of CVVBs. In addition, the polarization order and the ratio of beam waist width to wavelength have a great impact on the diffraction effect and the divergent behavior of CVVBs in the far-field.
|
|
Published: 30 June 2014
|
|
PACS: |
41.85.Ew
|
(Particle beam profile, beam intensity)
|
|
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.60.Jf
|
(Beam characteristics: profile, intensity, and power; spatial pattern formation)
|
|
|
|
|
[1] Gori F 2001 J. Opt. Soc. Am. A 18 1612 [2] Dorn R, Quabis S and Leuchs G 2003 Phys. Rev. Lett. 91 233901 [3] Zhan Q 2009 Adv. Opt. Photon. 1 1 [4] Li Y, Wang X, Zhao H, Kong L, Lou K, Gu B, Tu C and Wang H 2012 Opt. Lett. 37 1790 [5] Maurer C, Jesacher A, Furhapter S, Bernet S and Ritsch-Marte M 2007 New J. Phys. 9 1 [6] Wang X L, Ding J P, Ni W J, Guo C S and Wang H T 2007 Opt. Lett. 32 3549 [7] Stalder M and Schadt M 1996 Opt. Lett. 21 1948 [8] Niv A, Biener G, Kleiner V and Hasman E 2006 Opt. Express 14 4208 [9] Zhan Q W 2004 Opt. Express 12 3377 [10] Zhuang Y, Zhang Y, Ding B and Suyama T 2011 Opt. Commun. 284 1734 [11] Lu F, Zheng W and Huang Z 2009 Opt. Lett. 34 1870 [12] Chen W and Zhan Q 2009 Opt. Lett. 34 722 [13] Barreiro J T, Wei T C and Kwiat P G 2010 Phys. Rev. Lett. 105 030407 [14] Ciattoni A, Crosignami B and Porto P D 2002 Opt. Commun. 202 17 [15] Borghi R and Santarsiero M 2004 J. Opt. Soc. Am. A 21 2029 [16] Deng D 2006 J. Opt. Soc. Am. B 23 1228 [17] Chen J N 2011 Chin. Phys. Lett. 28 124202 [18] Jia X, Wang Y and Li B 2010 Opt. Express 18 7064 [19] Rashid M, Maragò O M and Jones P H 2009 J. Opt. A 11 065204 [20] Huang K, Shi P, Cao G W, Li K, Zhang X B and Li Y P 2011 Opt. Lett. 36 888 [21] Jia X and Wang Y 2011 Opt. Lett. 36 295 [22] Kang X P and Lü B D 2006 Chin. Phys. Lett. 23 2430 [23] Gao Z H and Lü B D 2006 Chin. Phys. Lett. 23 2070 [24] He Z, Lü B D and Kang X P 2006 Acta Phys. Sin. 55 4569 (in Chinese) [25] Zhou G Q 2010 Chin. Phys. B 19 064201 [26] Kotlyar V V and Kovalev A A 2010 J. Opt. Soc. Am. A 27 372 [27] Porras M A 1996 Opt. Commun. 127 79 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|