Chin. Phys. Lett.  2014, Vol. 31 Issue (07): 073701    DOI: 10.1088/0256-307X/31/7/073701
ATOMIC AND MOLECULAR PHYSICS |
Observation of Faraday Rotation in Cold Atoms in an Integrating Sphere
ZHENG Ben-Chang1, CHENG Hua-Dong1**, MENG Yan-Ling1, XIAO Ling1, WAN Jin-Yin1, LIU Liang1,2**
1Key Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201899
2Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071
Cite this article:   
ZHENG Ben-Chang, CHENG Hua-Dong, MENG Yan-Ling et al  2014 Chin. Phys. Lett. 31 073701
Download: PDF(893KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Faraday rotation of weak linearly polarized probe light is observed as it passes through a sample of cold 87Rb atoms prepared by diffused light in an integrating sphere. The rotation angle of the probe light-polarization as functions of laser intensity, detuning and biased magnetic field is measured. A Ramsey fringe with a linewidth of 35 Hz and contrast up to 92% is demonstrated. This method has potential applications in improving the performance of atomic clocks with cold atoms.
Published: 30 June 2014
PACS:  37.10.De (Atom cooling methods)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  42.62.Fi (Laser spectroscopy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/7/073701       OR      https://cpl.iphy.ac.cn/Y2014/V31/I07/073701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHENG Ben-Chang
CHENG Hua-Dong
MENG Yan-Ling
XIAO Ling
WAN Jin-Yin
LIU Liang
[1] Vanier J 2005 Appl. Phys. B 81 421
[2] Zibrov S, Novikova I, Phillips D, Taichenachev A, Yudin V, Walsworth R and Zibrov A 2005 Phys. Rev. A 72 011801(R)
[3] Zibrov S, Novikova I, Phillips D, Walsworth R, Zibrov A, Velichansky V, Taichenachev A and Yudin V 2010 Phys. Rev. A 81 013833
[4] Wang X C, Cheng H D, Zheng B C, Meng Y L, Xiao L, Liu L and Wang Y Z 2011 Joint Conf. IEEE Int. Frequency Control Symp. Eur. Frequency Time Forum (San Francisco 2–5 May 2011) p 1
[5] Lin J D, Deng J L, Ma Y S, He H J and Wang Y Z 2012 Opt. Lett. 37 5036
[6] Budker D, Gawlik W, Kimball D, Rochester S, Yashchuk V and Weis A 2002 Rev. Mod. Phys. 74 1153
[7] Kristensen M, Blok F J, van Eijkelenborg M A, Nienhuis G and Woerdman J P 1995 Phys. Rev. A 51 1085
[8] Qiu S W, Guo W G, Cao M T, Liu T, Han L, Liu H, Zhang P, Zhang S G, Gao H and Li F L 2012 Chin. Opt. Lett. 10 052701
[9] Labeyrie G, Miniatura C and Kaiser R 2001 Phys. Rev. A 64 033402
[10] Nash J and Narducci F A 2003 J. Mod. Opt. 50 2667
[11] Cheng H D, Zhang W Z, Ma H Y, Liu L and Wang Y Z 2009 Phys. Rev. A 79 023407
[12] Horrom T, Balik S, Lezama A, Havey M D and Mikhailov E E 2011 Phys. Rev. A 83 053850
Related articles from Frontiers Journals
[1] Zhu Ma, Chengyin Han, Xunda Jiang, Ruihuan Fang, Yuxiang Qiu, Minhua Zhao, Jiahao Huang, Bo Lu, and Chaohong Lee. Production of $^{87}$Rb Bose–Einstein Condensate in an Asymmetric Crossed Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(10): 073701
[2] Xiang-Chuan Yan, Da-Li Sun, Lu Wang, Jing Min, Shi-Guo Peng, and Kai-Jun Jiang. Production of Degenerate Fermi Gases of $^6$Li Atoms in an Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(5): 073701
[3] Yadong Wu, Zengming Meng, Kai Wen, Chengdong Mi, Jing Zhang, and Hui Zhai. Active Learning Approach to Optimization of Experimental Control[J]. Chin. Phys. Lett., 2020, 37(10): 073701
[4] Wei Qi, Ming-Cheng Liang, Han Zhang, Yu-Dong Wei, Wen-Wei Wang, Xu-Jie Wang, Xibo Zhang. Experimental Realization of Degenerate Fermi Gases of $^{87}$Sr Atoms with 10 or Two Spin Components[J]. Chin. Phys. Lett., 2019, 36(9): 073701
[5] Zhenlian Shi, Ziliang Li, Pengjun Wang, Zengming Meng, Lianghui Huang, Jing Zhang. Sub-Doppler Laser Cooling of $^{23}$Na in Gray Molasses on the $D_{2}$ Line[J]. Chin. Phys. Lett., 2018, 35(12): 073701
[6] Tian-You Gao, Dong-Fang Zhang, Ling-Ran Kong, Rui-Zong Li, Kai-Jun Jiang. Observation of Atomic Dynamic Behaviors in the Evaporative Cooling by In-Situ Imaging the Plugged Hole of Ultracold Atoms[J]. Chin. Phys. Lett., 2018, 35(8): 073701
[7] Jiang-Ling Yang, Yun Long, Wei-Wei Gao, Lan Jin, Zhan-Chun Zuo, Ru-Quan Wang. Enhanced Loading of $^{40}$K from Natural Abundance Potassium Source with a High Performance 2D$^{+}$ MOT[J]. Chin. Phys. Lett., 2018, 35(3): 073701
[8] Xiu-Mei Wang, Yan-Ling Meng, Ya-Ning Wang, Jin-Yin Wan, Ming-Yuan Yu, Xin Wang, Ling Xiao, Tang Li, Hua-Dong Cheng, Liang Liu. Dick Effect in the Integrating Sphere Cold Atom Clock[J]. Chin. Phys. Lett., 2017, 34(6): 073701
[9] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 073701
[10] Dong-Fang Zhang, Tian-You Gao, Ling-Ran Kong, Kai Li, Kai-Jun Jiang. Production of Rubidium Bose–Einstein Condensate in an Optically Plugged Magnetic Quadrupole Trap[J]. Chin. Phys. Lett., 2016, 33(07): 073701
[11] Lin Li, Qiu-Zhi Qu, Bin Wang, Tang Li, Jian-Bo Zhao, Jing-Wei Ji, Wei Ren, Xin Zhao, Mei-Feng Ye, Yuan-Yuan Yao, De-Sheng Lü, Liang Liu. Initial Tests of a Rubidium Space Cold Atom Clock[J]. Chin. Phys. Lett., 2016, 33(06): 073701
[12] YU Wei-Wei, YU Rong-Mei, CHENG Yong-Jun. Tune-Out Wavelengths for the Rb Atom[J]. Chin. Phys. Lett., 2015, 32(12): 073701
[13] ZHANG Feng, LONG Yun, YANG Jiang-Ling, MA Guo-Qiang, YIN Ji-Ping, WANG Ru-Quan. High-Performance Sodium Bose–Einstein Condensate Apparatus with a Hybrid Trap and Long-Distance Magnetic Transfer[J]. Chin. Phys. Lett., 2015, 32(12): 073701
[14] WANG Qiang, LIN Yi-Ge, GAO Fang-Lin, LI Ye, LIN Bai-Ke, MENG Fei, ZANG Er-Jun, LI Tian-Chu, FANG Zhan-Jun. A Longitudinal Zeeman Slower Based on Ring-Shaped Permanent Magnets for a Strontium Optical Lattice Clock[J]. Chin. Phys. Lett., 2015, 32(10): 073701
[15] LI Wen-Fang, DU Jin-Jin, WEN Rui-Juan, LI Gang, ZHANG Tian-Cai. Trapping and Cooling of Single Atoms in an Optical Microcavity by a Magic-Wavelength Dipole Trap[J]. Chin. Phys. Lett., 2015, 32(10): 073701
Viewed
Full text


Abstract