ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Sr3Bi(PO4)3:Eu2+ Luminescence, Concentration Quenching and Crystallographic Sites |
GAO Shao-Jie1,2, LI Ting1, ZHANG Zi-Cai1, LI Pan-Lai1, WANG Zhi-Jun1**, YANG Zhi-Ping1** |
1College of Physics Science and Technology, Hebei University, Baoding 071002 2Continuing Education College, Hebei University, Baoding 071002
|
|
Cite this article: |
GAO Shao-Jie, LI Ting, ZHANG Zi-Cai et al 2014 Chin. Phys. Lett. 31 073301 |
|
|
Abstract A blue emitting phosphor Sr3Bi(PO4)3:Eu2+ is synthesized by a high-temperature solid state method, and its luminescent property is investigated. Sr3Bi(PO4)3:Eu2+ can create blue emission under the 332 radiation excitation, and the prominent luminescence in blue (423 nm) due to the 4f5d1→4f7 transition of the Eu2+ ion. The crystallographic sites of the Eu2+ ion in Sr3Bi(PO4)3 are analyzed, and the 420 and 440 nm emission peaks of the Eu2+ ion are assigned to the nine-coordination and eight-coordination, respectively. The emission intensity of Sr3Bi(PO4)3:Eu2+ is influenced by the Eu2+ doping content, and the concentration quenching effect is observed. The quenching mechanism is the dipole-dipole interaction, and the critical distance of energy transfer is calculated by the concentration quenching method to be approximately 1.72 nm.
|
|
Published: 30 June 2014
|
|
PACS: |
33.50.Dq
|
(Fluorescence and phosphorescence spectra)
|
|
33.20.Kf
|
(Visible spectra)
|
|
|
|
|
[1] Gwak S J, Arunkumar P and Im W B 2014 J. Phys. Chem. C 118 2686 [2] Park W B, Singh S P and Sohn K S 2014 J. Am. Chem. Soc. 136 2363 [3] Ci Z, Que M, Shi Y, Zhu G and Wang Y 2014 Inorg. Chem. 53 2195 [4] Chen W T, Sheu H S, Liu R S and Attfield J P 2012 J. Am. Chem. Soc. 134 8022 [5] Unithrattil S, Lee K H and Im W B 2014 J. Am. Ceram. Soc. 97 874 [6] Wang T, Zheng P, Liu X, Chen H, Bian L and Liu Q L 2014 J. Lumin. 147 173 [7] Yadav R S, Shukla V K, Mishra P, Pandey S K, Kumar K, Baranwal V, Kumar M and Pandey A C 2013 J. Alloys Compd. 547 1 [8] Hou D, Xu X, Xie M and Liang H 2014 J. Lumin. 146 18 [9] Zhang J C, Zhou M J and Wang Y H 2012 Chin. Phys. B 21 124102 [10] Yu R, Noh H M, Moon B K, Choi B C, Jeong J H, Lee H S, Jang K and Yi S S 2014 J. Lumin. 145 717 [11] Jia Y, LüW, Guo N, LüW, Zhao Q and You H 2013 Chem. Commun. 49 2664 [12] Wang F, Zhou D, Ma S, Yu H, Li P and Yang Z 2011 J. Alloys Compd. 509 4824 [13] Li P, Wang Z, Yang Z and Guo Q 2012 J. Electrochem. Soc. 159 H307 [14] Jiao M, Guo N, LüW, Jia Y, Lv W, Zhao Q, Shao B and You H 2013 Dalton Trans. 42 12395 [15] Wang Z, Lou S and Li P 2014 J. Alloys Compd. 586 536 [16] Kuo T W and Chen T M 2010 J. Electrochem. Soc. 157 J216 [17] Guo N, Jia Y, Lü W, Lv W, Zhao Q, Jiao M, Shao B and You H 2013 Dalton Trans. 42 5649 [18] Guo N, Huang Y, Jia Y, Lv W, Zhao Q, Lü W, Xia Z and You H 2013 Dalton Trans. 42 941 [19] Guo N, Lü W, Jia Y, Lv W and Zhao Q 2013 ChemPhysChem 14 192 [20] Jia Y, Lü W, Guo N, Lü W, Zhao Q and You H 2013 Phys. Chem. Chem. Phys. 15 6057 [21] Sun J, Sun Y, Zeng J and Du H 2013 J. Phys. Chem. Solids 74 1007 [22] Sun J, Sun Y, Zeng J and Du H 2013 Opt. Mater. 35 1276 [23] Sahoo P P and Guru Row T N 2010 Inorg. Chem. 49 10013 [24] Huang C H, Chen Y C, Chen T M, Chan T S and Sheu H S 2011 J. Mater. Chem. 21 5645 [25] Huang C H and Chen T M 2011 J. Phys. Chem. C 115 2349 [26] Van Uitert L G 1984 J. Lumin. 29 1 [27] Wang L, Wang Y and Xu X 2008 J. Appl. Phys. 104 013519 [28] Zhang X, Dong Z, Shi J and Gong M 2012 Mater. Lett. 76 113 [29] Van Uitert L G 1967 J. Electrochem. Soc. 114 1048 [30] Blasse G 1969 Philips Res. Rep. 24 131 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|