Chin. Phys. Lett.  2014, Vol. 31 Issue (07): 072901    DOI: 10.1088/0256-307X/31/7/072901
NUCLEAR PHYSICS |
Advantages of Artificial Neural Network in Neutron Spectra Unfolding
ZHU Qing-Jun**, TIAN Li-Chao, YANG Xiao-Hu, GAN Long-Fei, ZHAO Na, MA Yan-Yun
College of Science, National University of Defense Technology, Changsha 410073
Cite this article:   
ZHU Qing-Jun, TIAN Li-Chao, YANG Xiao-Hu et al  2014 Chin. Phys. Lett. 31 072901
Download: PDF(846KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Advantages of using the artificial neural network method in neutron spectra unfolding are investigated in comparison with the maximum entropy unfolding method. By introducing the information entropy theory, we find that for the spectrum with the information entropy over 3.5, the four-layer feed-forward neural network (11-35-55-60) and the maximum entropy method generally demonstrate the same unfolding performance, while the spectrum with the information entropy lower than 3.5, the artificial neural network unfolding model is recommend due to the fact that the artificial neural network method has a stronger negative correlation between the entropy of the spectra and the mean squares error of the spectra than the maximum entropy method.
Published: 30 June 2014
PACS:  29.30.Hs (Neutron spectroscopy)  
  29.25.Dz (Neutron sources)  
  29.85.Fj (Data analysis)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/7/072901       OR      https://cpl.iphy.ac.cn/Y2014/V31/I07/072901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHU Qing-Jun
TIAN Li-Chao
YANG Xiao-Hu
GAN Long-Fei
ZHAO Na
MA Yan-Yun
[1] Chen J 2004 At. Energy Sci. Technol. 38 131 (in Chinese)
[2] Li T S 2004 PhD Dissertation (Beijing: China Institute of Atomic Energy) (in Chinese)
[3] Thomas D J and Alevra A V 2002 Nucl. Instrum. Methods Phys. Res. Sect. A 476 12
[4] Li T S, Yang L Z, Chen J, Ma Y Z and Hou X L 2004 Nucl. Electron. Detect. Technol. 24 453 (in Chinese)
[5] Reginatto M 2009 Radiat. Meas. 44 692
[6] Lin C B, Liu G F, Yang J and Luo X L 2011 Nucl. Electron. Detect. Technol. 31 222 (in Chinese)
[7] Wang S L, Huang H X, Ruan X C, Li X, Bao J, Nie Y B, Zhong Q P, Zhou Z Y and Kong X Z 2009 Chin. Phys. C 33 378
[8] Wang S L, Kong X Z, Deng Y J, Tuo F, Wang Q, Wei J F and Li Y M 2009 Nucl. Phys. Rev. 26 27 (in Chinese)
[9] Liu S H, Chen W S, A J H, Chen D, Zhang W S and Wang W S 2004 Chin. J. Nucl. Sci. Eng. 22 374 (in Chinese)
[10] Reginatto M 2010 Radiat. Meas. 45 1323
[11] M Matzke 1994 Unfolding of Pulse Height Spectra: the HEPRO Program System (PTB 1994)
[12] Liu S H, Chen D, A J H, Chen W S and Zhang W S 2003 Nucl. Power Eng. 24 204 (in Chinese)
[13] Reginatto M and Goldhagen P 1999 Health Phys. 77 579
[14] Zhu Q J, Song G, Song F Q, Guo Q and Wu Y C 2012 Nucl. Instrum. Methods Phys. Res. Sect. A 687 23
[15] Vega-Carrillo H R, Ortiz-Rodriguez J M, Martinez-Blanco M R and Hernandez-Davila V M 2010 AIP Conf. Proc. (Mexico City, Mexico 19–22 March 2010) p 1310
[16] Vega-Carrillo H R, Ortiz-Rodriguez J M and Martínez-Blanco M R 2012 Appl. Radiat. Isot. 71 87
[17] Matzke M 2003 Radiat. Prot. Dosim. 107 155
[18] I A.E. Agency 2001 Compendium of neutron spectra and detector responses for radiation protection purposes: supplement to Technical reports series (International Atomic Energy Agency 2001)
[19] Zhu Q J, Song F Q, Ren J, Chen X Y and Zhou B 2014 Radiat. Meas. 62 22
Related articles from Frontiers Journals
[1] Xiao-Hui Yu, Yuan Liu, San-Ya Du, Xu Zheng, Jin-Long Zhu, Hong-Wu Xu, Jian-Zhong Zhang, Shi-Yu Du, Xiao-Cheng Zeng, J. S. Francisco, Chang-Qing Jin, Yu-Sheng Zhao, Hui Li. CH$_{4}$ Gas Extraction by CO$_{2}$: Substitution in Clathrate Hydrate through Bimolecular Iteration[J]. Chin. Phys. Lett., 2020, 37(4): 072901
[2] H. Zaki Dizaji, T. Kakavand, F. Abbasi Davani. Dosimetry Methods of Fast Neutron Using the Semiconductor Diodes[J]. Chin. Phys. Lett., 2014, 31(1): 072901
Viewed
Full text


Abstract